IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v64y2016i4d10.1007_s10640-015-9891-3.html
   My bibliography  Save this article

On the Benefits of Including Age-Structure in Harvest Control Rules

Author

Listed:
  • José-María Da-Rocha

    (Universidade de Vigo
    Centro de Investigación Económica, Instituto Tecnológico Autoónomo de México (ITAM))

  • Rosa Mato-Amboage

    (York University)

Abstract

This paper explores the benefits of including age structure in the control rule (HCR) when decision makers regard their (age-structured) models as approximations. We find that introducing age structure into the HCR reduces both the volatility of the spawning biomass and the yield. Although the benefits are lower at a fairly imprecise level, there are still major advantages for the actual precision with which the case study is assessed. Moreover, we find that when age-structure is included in the HCR the relative ranking of different policies in terms of variance in biomass and yield does not differ. These results are shown both theoretically and numerically by applying the model to the Southern Hake fishery.

Suggested Citation

  • José-María Da-Rocha & Rosa Mato-Amboage, 2016. "On the Benefits of Including Age-Structure in Harvest Control Rules," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(4), pages 619-641, August.
  • Handle: RePEc:kap:enreec:v:64:y:2016:i:4:d:10.1007_s10640-015-9891-3
    DOI: 10.1007/s10640-015-9891-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10640-015-9891-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10640-015-9891-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wilen, James E., 1985. "Bioeconomics of renewable resource use," Handbook of Natural Resource and Energy Economics, in: A. V. Kneese† & J. L. Sweeney (ed.), Handbook of Natural Resource and Energy Economics, edition 1, volume 1, chapter 2, pages 61-124, Elsevier.
    2. repec:ehu:dfaeii:6461 is not listed on IDEAS
    3. repec:ehu:dfaeii:8769 is not listed on IDEAS
    4. Rognvaldur Hannesson, 1975. "Fishery Dynamics: A North Atlantic Cod Fishery," Canadian Journal of Economics, Canadian Economics Association, vol. 8(2), pages 151-173, May.
    5. Anders Skonhoft & Niels Vestergaard & Martin Quaas, 2012. "Optimal Harvest in an Age Structured Model with Different Fishing Selectivity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 51(4), pages 525-544, April.
    6. Olli Tahvonen & Martin Quaas & Jörn Schmidt & Rudi Voss, 2013. "Optimal Harvesting of an Age-Structured Schooling Fishery," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(1), pages 21-39, January.
    7. Kompas, Tom & Dichmont, Cathy M. & Punt, Andre E. & Deng, A. & Che, Tuong Nhu & Bishop, Janet & Gooday, Peter & Ye, Yemin & Zhou, S., 2010. "Maximizing profits and conserving stocks in the Australian Northern Prawn Fishery," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(3), pages 1-19.
    8. Florian Diekert & Dag Hjermann & Eric Nævdal & Nils Stenseth, 2010. "Spare the Young Fish: Optimal Harvesting Policies for North-East Arctic Cod," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 47(4), pages 455-475, December.
    9. José-María Da Rocha & María-Jose Gutiérrez & Luis Antelo, 2013. "Selectivity, Pulse Fishing and Endogenous Lifespan in Beverton-Holt Models," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(1), pages 139-154, January.
    10. Tahvonen, Olli, 2009. "Economics of harvesting age-structured fish populations," Journal of Environmental Economics and Management, Elsevier, vol. 58(3), pages 281-299, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rosa, Renato & Costa, Tiago & Mota, Rui Pedro, 2022. "Incorporating economics into fishery policies: Developing integrated ecological-economics harvest control rules," Ecological Economics, Elsevier, vol. 196(C).
    2. Da-Rocha, Jose-Maria & García-Cutrin, Javier & Gutierrez, Maria Jose, 2016. "Harvesting Control Rules that deal with Scientific Uncertainty," MPRA Paper 72059, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:ehu:dfaeii:13257 is not listed on IDEAS
    2. repec:ehu:dfaeii:15662 is not listed on IDEAS
    3. Quaas, Martin F. & Requate, Till & Ruckes, Kirsten & Skonhoft, Anders & Vestergaard, Niels & Voss, Rudi, 2013. "Incentives for optimal management of age-structured fish populations," Resource and Energy Economics, Elsevier, vol. 35(2), pages 113-134.
    4. Ni, Yuanming & Steinshamn, Stein I. & Kvamsdal, Sturla F., 2022. "Negative shocks in an age-structured bioeconomic model and how to deal with them," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 15-30.
    5. Helgesen, Irmelin Slettemoen & Skonhoft, Anders & Eide, Arne, 2018. "Maximum Yield Fishing and Optimal Fleet Composition. A Stage Structured Model Analysis With an Example From the Norwegian North-East Arctic Cod Fishery," Ecological Economics, Elsevier, vol. 153(C), pages 204-217.
    6. José-María Da Rocha & María-Jose Gutiérrez & Luis Antelo, 2013. "Selectivity, Pulse Fishing and Endogenous Lifespan in Beverton-Holt Models," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(1), pages 139-154, January.
    7. José Da Rocha & María Gutiérrez, 2012. "Endogenous Fishery Management in a Stochastic Model: Why Do Fishery Agencies Use TACs Along with Fishing Periods?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 53(1), pages 25-59, September.
    8. Tahvonen, Olli & Quaas, Martin F. & Voss, Rüdiger, 2018. "Harvesting selectivity and stochastic recruitment in economic models of age-structured fisheries," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 659-676.
    9. Florian Diekert, 2012. "Growth Overfishing: The Race to Fish Extends to the Dimension of Size," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 52(4), pages 549-572, August.
    10. Thorsten Upmann & Stefan Behringer, 2017. "Harvesting a Remote Renewable Resource," CESifo Working Paper Series 6724, CESifo.
    11. C. Mullon & J. Field & O. Thébaud & P. Cury & C. Chaboud, 2012. "Keeping the big fish: Economic and ecological tradeoffs in size-based fisheries management," Journal of Bioeconomics, Springer, vol. 14(3), pages 267-285, October.
    12. Anne Borge Johannesen & Jon Olaf Olaussen & Anders Skonhoft, 2019. "Livestock and Carnivores: Economic and Ecological Interactions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(1), pages 295-317, September.
    13. Hutniczak, Barbara, 2015. "Modeling heterogeneous fleet in an ecosystem based management context," Ecological Economics, Elsevier, vol. 120(C), pages 203-214.
    14. Nævdal, Eric & Skonhoft, Anders, 2018. "New insights from the canonical fisheries model – Optimal management when stocks are low," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 125-133.
    15. Martin F. Quaas & Till Requate, 2013. "Sushi or Fish Fingers? Seafood Diversity, Collapsing Fish Stocks, and Multispecies Fishery Management," Scandinavian Journal of Economics, Wiley Blackwell, vol. 115(2), pages 381-422, April.
    16. Melstrom, Richard T., 2015. "Cyclical harvesting in fisheries with bycatch," Resource and Energy Economics, Elsevier, vol. 42(C), pages 1-15.
    17. repec:ehu:dfaeii:8768 is not listed on IDEAS
    18. Jang, Geunsoo & Cho, Giphil, 2022. "Optimal harvest strategy based on a discrete age-structured model with monthly fishing effort for chub mackerel, Scomber japonicus, in South Korea," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    19. Christine Bertram & Martin F. Quaas, 2017. "Biodiversity and Optimal Multi-species Ecosystem Management," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(2), pages 321-350, June.
    20. Naevdal, Eric & Olaussen, Jon Olaf & Skonhoft, Anders, 2012. "A bioeconomic model of trophy hunting," Ecological Economics, Elsevier, vol. 73(C), pages 194-205.
    21. repec:ehu:dfaeii:6406 is not listed on IDEAS
    22. Alvin Slewion Jueseah & Dadi Mar Kristofersson & Tumi Tómasson & Ogmundur Knutsson, 2020. "A Bio-Economic Analysis of the Liberian Coastal Fisheries," Sustainability, MDPI, vol. 12(23), pages 1-21, November.
    23. Kanik, Zafer & Kucuksenel, Serkan, 2016. "Quota implementation of the maximum sustainable yield for age-structured fisheries," MPRA Paper 70535, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:64:y:2016:i:4:d:10.1007_s10640-015-9891-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.