IDEAS home Printed from https://ideas.repec.org/a/kap/jbioec/v14y2012i3p267-285.html
   My bibliography  Save this article

Keeping the big fish: Economic and ecological tradeoffs in size-based fisheries management

Author

Listed:
  • C. Mullon
  • J. Field
  • O. Thébaud
  • P. Cury
  • C. Chaboud

Abstract

We explore several issues raised by a size dependent regulation of a fishery in a situation where it is important for conservation purposes to keep highly reproductive big fish and where the fish prices depend on their body size. Firstly, we represent in a common modeling frame, the interplay between the biological characteristics of the exploited species (growth, reproduction) and the price/size relationship. Secondly, we explore the benefits of conservation measures based on a maximum body size for the fish caught instead of a minimum body size. As a result of computations, it appears that one should ask whether a management based on a maximum body size is not both possible to implement and equally protective of the stock, even when the price function depends on the size of fish. Copyright Springer Science+Business Media, LLC. 2012

Suggested Citation

  • C. Mullon & J. Field & O. Thébaud & P. Cury & C. Chaboud, 2012. "Keeping the big fish: Economic and ecological tradeoffs in size-based fisheries management," Journal of Bioeconomics, Springer, vol. 14(3), pages 267-285, October.
  • Handle: RePEc:kap:jbioec:v:14:y:2012:i:3:p:267-285
    DOI: 10.1007/s10818-011-9124-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10818-011-9124-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10818-011-9124-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mardle, Simon & Pascoe, Sean & Boncoeur, Jean & Gallic, Bertrand Le & García-Hoyo, Juan J. & Herrero, Inés & Jimenez-Toribio, Ramon & Cortes, Concepción & Padilla, Nuria & Nielsen, Jesper Raakjaer & M, 2002. "Objectives of fisheries management: case studies from the UK, France, Spain and Denmark," Marine Policy, Elsevier, vol. 26(6), pages 415-428, November.
    2. Claire Macher & Olivier Guyader & Catherine Talidec & M. Bertignac, 2008. "A cost–benefit analysis of improving trawl selectivity in the case of discards: The Nephrops norvegicus fishery in the Bay of Biscay," Post-Print hal-00359860, HAL.
    3. Wilen, James E., 1985. "Bioeconomics of renewable resource use," Handbook of Natural Resource and Energy Economics, in: A. V. Kneese† & J. L. Sweeney (ed.), Handbook of Natural Resource and Energy Economics, edition 1, volume 1, chapter 2, pages 61-124, Elsevier.
    4. Rognvaldur Hannesson, 1975. "Fishery Dynamics: A North Atlantic Cod Fishery," Canadian Journal of Economics, Canadian Economics Association, vol. 8(2), pages 151-173, May.
    5. Tahvonen, Olli, 2009. "Economics of harvesting age-structured fish populations," Journal of Environmental Economics and Management, Elsevier, vol. 58(3), pages 281-299, November.
    6. J. M. Gates, 1974. "Demand Price, Fish Size And The Price Of Fish," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 22(3), pages 1-12, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Da Rocha, José María & García-Cutrín, Javier & Gutiérrez Huerta, María José & Touza, Julia, 2015. "Reconciling yield stability with international fisheries agencies precautionary preferences: the role of non constant discount factors in age structured models," DFAEII Working Papers 1988-088X, University of the Basque Country - Department of Foundations of Economic Analysis II.
    2. José-María Da-Rocha & Rosa Mato-Amboage, 2016. "On the Benefits of Including Age-Structure in Harvest Control Rules," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(4), pages 619-641, August.
    3. Ni, Yuanming & Steinshamn, Stein I. & Kvamsdal, Sturla F., 2022. "Negative shocks in an age-structured bioeconomic model and how to deal with them," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 15-30.
    4. Da Rocha, José María & Gutiérrez Huerta, María José & Cerviño, Santiago, 2012. "Reference Points Based on Dynamic Optimisation: A Versatil Algorithm for Mixed Fishery Management with Bio-economic Agestructured Models," DFAEII Working Papers 1988-088X, University of the Basque Country - Department of Foundations of Economic Analysis II.
    5. Ni, Yuanming & Steinshamn, Stein I., 2016. "Optimal fishing mortalities with age-structured bioeconomic model - a case of NEA mackerel," Discussion Papers 2016/9, Norwegian School of Economics, Department of Business and Management Science.
    6. José-María Da Rocha & María-Jose Gutiérrez & Luis Antelo, 2013. "Selectivity, Pulse Fishing and Endogenous Lifespan in Beverton-Holt Models," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(1), pages 139-154, January.
    7. Tahvonen, Olli, 2009. "Economics of harvesting age-structured fish populations," Journal of Environmental Economics and Management, Elsevier, vol. 58(3), pages 281-299, November.
    8. Helgesen, Irmelin Slettemoen & Skonhoft, Anders & Eide, Arne, 2018. "Maximum Yield Fishing and Optimal Fleet Composition. A Stage Structured Model Analysis With an Example From the Norwegian North-East Arctic Cod Fishery," Ecological Economics, Elsevier, vol. 153(C), pages 204-217.
    9. Anders Skonhoft & Niels Vestergaard & Martin Quaas, 2012. "Optimal Harvest in an Age Structured Model with Different Fishing Selectivity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 51(4), pages 525-544, April.
    10. Tahvonen, Olli & Quaas, Martin F. & Voss, Rüdiger, 2018. "Harvesting selectivity and stochastic recruitment in economic models of age-structured fisheries," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 659-676.
    11. Quaas, Martin F. & Requate, Till & Ruckes, Kirsten & Skonhoft, Anders & Vestergaard, Niels & Voss, Rudi, 2013. "Incentives for optimal management of age-structured fish populations," Resource and Energy Economics, Elsevier, vol. 35(2), pages 113-134.
    12. Ni, Yuanming, 2019. "Optimization of age-structured bioeconomic model: recruitment, weight gain and environmental effects," Discussion Papers 2019/4, Norwegian School of Economics, Department of Business and Management Science.
    13. Diekert, Florian K. & Hjermann, Dag Ø. & Nævdal , Eric & Stenseth , Nils Chr., 2008. "Optimal Age- and Gear-specific Harvesting Policies for North-East Arctic Cod," Memorandum 16/2008, Oslo University, Department of Economics.
    14. Holland, Daniel S. & Herrera, Guillermo E., 2012. "The impact of age structure, uncertainty, and asymmetric spatial dynamics on regulatory performance in a fishery metapopulation," Ecological Economics, Elsevier, vol. 77(C), pages 207-218.
    15. Dawid, Herbert & Kopel, Michael, 1997. "On the Economically Optimal Exploitation of a Renewable Resource: The Case of a Convex Environment and a Convex Return Function," Journal of Economic Theory, Elsevier, vol. 76(2), pages 272-297, October.
    16. Jeroen C. J. M. van den Bergh, 1999. "Materials, Capital, Direct/Indirect Substitution, and Mass Balance Production Functions," Land Economics, University of Wisconsin Press, vol. 75(4), pages 547-561.
    17. Thiele, Rainer, 1994. "Conserving tropical rain forests in Indonesia: a CGE analysis of alternative policies," Kiel Working Papers 621, Kiel Institute for the World Economy (IfW Kiel).
    18. B. Rudders, David & Ward, John M., 2015. "Own-price elasticity of open access supply as a long-run measure of fish stock abundance," Marine Policy, Elsevier, vol. 53(C), pages 215-226.
    19. Martin F. Quaas & Max T. Stoeven & Bernd Klauer & Thomas Petersen & Johannes Schiller, 2018. "Windows of Opportunity for Sustainable Fisheries Management: The Case of Eastern Baltic Cod," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(2), pages 323-341, June.
    20. Martin F. Quaas & Till Requate, 2013. "Sushi or Fish Fingers? Seafood Diversity, Collapsing Fish Stocks, and Multispecies Fishery Management," Scandinavian Journal of Economics, Wiley Blackwell, vol. 115(2), pages 381-422, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jbioec:v:14:y:2012:i:3:p:267-285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.