IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/69648.html
   My bibliography  Save this paper

Measuring poverty with the Foster, Greer and Thorbecke indexes based on the Gamma distribution

Author

Listed:
  • Fernández-Morales, Antonio

Abstract

The purpose of this paper is the estimation of the Foster, Greer and Thorbecke family of poverty indexes using the Gamma distribution as a continuous representation of the distribution of incomes. The expressions of this family of poverty indexes associated with the Gamma probability model and their asymptotic distributions are derived in the text, both for an exogenous and a relative (to the mean) poverty line. Finally, a Monte Carlo experiment is performed to compare three different methods of estimation for grouped data.

Suggested Citation

  • Fernández-Morales, Antonio, 2016. "Measuring poverty with the Foster, Greer and Thorbecke indexes based on the Gamma distribution," MPRA Paper 69648, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:69648
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/69648/1/MPRA_paper_69648.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Foster, James & Greer, Joel & Thorbecke, Erik, 1984. "A Class of Decomposable Poverty Measures," Econometrica, Econometric Society, vol. 52(3), pages 761-766, May.
    2. Salem, A B Z & Mount, T D, 1974. "A Convenient Descriptive Model of Income Distribution: The Gamma Density," Econometrica, Econometric Society, vol. 42(6), pages 1115-1127, November.
    3. Kloek, Teun & van Dijk, Herman K., 1978. "Efficient estimation of income distribution parameters," Journal of Econometrics, Elsevier, vol. 8(1), pages 61-74, August.
    4. Satya R. Chakravarty & Nachiketa Chattopadhyay & Joseph Deutsh & Zoya Nissanov & Jacques Silber, 2019. "Reference Groups and the Poverty Line: An Axiomatic Approach with an Empirical Illustration," Themes in Economics, in: Satya R. Chakravarty (ed.), Poverty, Social Exclusion and Stochastic Dominance, pages 39-61, Springer.
    5. Hajargasht, Gholamreza & Griffiths, William E., 2013. "Pareto–lognormal distributions: Inequality, poverty, and estimation from grouped income data," Economic Modelling, Elsevier, vol. 33(C), pages 593-604.
    6. Giovanni Maria Giorgi & Saralees Nadarajah, 2010. "Bonferroni and Gini indices for various parametric families of distributions," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 23-46.
    7. Satya R. Chakravarty & Nachiketa Chattopadhyay & Joseph Deutsch & Zoya Nissanov & Jacques Silber, 2016. "Reference Groups and the Poverty Line: An Axiomatic Approach with an Empirical Illustration," Research on Economic Inequality, in: John A. Bishop & Juan Gabriel Rodríguez (ed.), Inequality after the 20th Century: Papers from the Sixth ECINEQ Meeting, volume 24, pages 1-27, Emerald Publishing Ltd.
    8. Gholamreza Hajargasht & William E. Griffiths & Joseph Brice & D.S. Prasada Rao & Duangkamon Chotikapanich, 2012. "Inference for Income Distributions Using Grouped Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 563-575, May.
    9. Duangkamon Chotikapanich & William E. Griffiths, 2008. "Estimating Income Distributions Using a Mixture of Gamma Densities," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 16, pages 285-302, Springer.
    10. Maxim Pinkovskiy & Xavier Sala-i-Martin, 2009. "Parametric Estimations of the World Distribution of Income," NBER Working Papers 15433, National Bureau of Economic Research, Inc.
    11. James B. McDonald, 2008. "Some Generalized Functions for the Size Distribution of Income," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 3, pages 37-55, Springer.
    12. Carmelo Garcia Perez & Mercedes Prieto Alaiz, 2011. "Using the Dagum model to explain changes in personal income distribution," Applied Economics, Taylor & Francis Journals, vol. 43(28), pages 4377-4386.
    13. McDonald, James B & Ransom, Michael R, 1979. "Functional Forms, Estimation Techniques and the Distribution of Income," Econometrica, Econometric Society, vol. 47(6), pages 1513-1525, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vladimir Hlasny, 2021. "Parametric representation of the top of income distributions: Options, historical evidence, and model selection," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1217-1256, September.
    2. Kazuhiko Kakamu & Haruhisa Nishino, 2016. "Bayesian Estimation Of Beta-Type Distribution Parameters Based On Grouped Data," Discussion Papers 2016-08, Kobe University, Graduate School of Business Administration.
    3. Christophe Muller, 2001. "The Properties of the Watts Poverty Index under Lognormality," Economics Bulletin, AccessEcon, vol. 9(1), pages 1-9.
    4. Callealta Barroso, Francisco Javier & García-Pérez, Carmelo & Prieto-Alaiz, Mercedes, 2020. "Modelling income distribution using the log Student’s t distribution: New evidence for European Union countries," Economic Modelling, Elsevier, vol. 89(C), pages 512-522.
    5. Kazuhiko Kakamu & Haruhisa Nishino, 2019. "Bayesian Estimation of Beta-type Distribution Parameters Based on Grouped Data," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 625-645, August.
    6. Sung Y. Park & Anil K. Bera, 2018. "Information theoretic approaches to income density estimation with an application to the U.S. income data," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 16(4), pages 461-486, December.
    7. Duangkamon Chotikapanich & William E. Griffiths & Gholamreza Hajargasht & Wasana Karunarathne & D. S. Prasada Rao, 2018. "Using the GB2 Income Distribution," Econometrics, MDPI, vol. 6(2), pages 1-24, April.
    8. J. F. Muñoz & E. à lvarez-Verdejo & R. M. García-Fernández, 2018. "On Estimating the Poverty Gap and the Poverty Severity Indices With Auxiliary Information," Sociological Methods & Research, , vol. 47(3), pages 598-625, August.
    9. Guanghua Wan, 2012. "Towards Greater Equality in China: The Economic Growth Dividend," Working Papers 2012/33, Maastricht School of Management.
    10. Dorothée Boccanfuso & Bernard Decaluwé & Luc Savard, 2008. "Poverty, income distribution and CGE micro-simulation modeling: Does the functional form of distribution matter?," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 6(2), pages 149-184, June.
    11. Kazuhiko Kakamu, 2022. "Bayesian analysis of mixtures of lognormal distribution with an unknown number of components from grouped data," Papers 2210.05115, arXiv.org, revised Sep 2023.
    12. Dietmar Harhoff & Frederic M. Scherer & Katrin Vopel, 1997. "Exploring the Tail of Patented Invention Value Distributions," CIG Working Papers FS IV 97-27, Wissenschaftszentrum Berlin (WZB), Research Unit: Competition and Innovation (CIG).
    13. Lubrano, Michel & Ndoye, Abdoul Aziz Junior, 2016. "Income inequality decomposition using a finite mixture of log-normal distributions: A Bayesian approach," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 830-846.
    14. Feng Zhu, 2005. "A nonparametric analysis of the shape dynamics of the US personal income distribution: 1962-2000," BIS Working Papers 184, Bank for International Settlements.
    15. Kazuhiko Kakamu, 2016. "Simulation Studies Comparing Dagum and Singh–Maddala Income Distributions," Computational Economics, Springer;Society for Computational Economics, vol. 48(4), pages 593-605, December.
    16. David Warner & Prasada Rao & William E. Griffiths & Duangkamon Chotikapanich, 2011. "Global Inequality: Levels and Trends, 1993-2005," Discussion Papers Series 436, School of Economics, University of Queensland, Australia.
    17. Vinh, Andrea & Griffiths, William E. & Chotikapanich, Duangkamon, 2010. "Bivariate income distributions for assessing inequality and poverty under dependent samples," Economic Modelling, Elsevier, vol. 27(6), pages 1473-1483, November.
    18. Mathias Silva, 2023. "Parametric estimation of income distributions using grouped data: an Approximate Bayesian Computation approach [Working Papers / Documents de travail]," Working Papers hal-04066544, HAL.
    19. Gholamreza Hajargsht & William E. Griffiths & Joseph Brice & D.S. Prasada Rao & Duangkamon Chotikapanich, 2011. "GMM Estimation of Income Distributions from Grouped Data," Department of Economics - Working Papers Series 1129, The University of Melbourne.
    20. Walter, Paul & Weimer, Katja, 2018. "Estimating poverty and inequality indicators using interval censored income data from the German microcensus," Discussion Papers 2018/10, Free University Berlin, School of Business & Economics.

    More about this item

    Keywords

    Poverty indexes; Income distribution; Gamma distribution;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions
    • I32 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - Measurement and Analysis of Poverty

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:69648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.