IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v33y2009i3p237-262.html
   My bibliography  Save this article

Models and Simulations for Portfolio Rebalancing

Author

Listed:
  • Gianfranco Guastaroba
  • Renata Mansini
  • M. Speranza

Abstract

No abstract is available for this item.

Suggested Citation

  • Gianfranco Guastaroba & Renata Mansini & M. Speranza, 2009. "Models and Simulations for Portfolio Rebalancing," Computational Economics, Springer;Society for Computational Economics, vol. 33(3), pages 237-262, April.
  • Handle: RePEc:kap:compec:v:33:y:2009:i:3:p:237-262
    DOI: 10.1007/s10614-008-9158-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10614-008-9158-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10614-008-9158-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nitin R. Patel & Marti G. Subrahmanyam, 1982. "A Simple Algorithm for Optimal Portfolio Selection with Fixed Transaction Costs," Management Science, INFORMS, vol. 28(3), pages 303-314, March.
    2. Keith V. Smith, 1967. "A Transition Model For Portfolio Revision," Journal of Finance, American Finance Association, vol. 22(3), pages 425-439, September.
    3. Elton, Edwin J & Gruber, Martin J, 1974. "On the Optimality of Some Multiperiod Portfolio Selection Criteria," The Journal of Business, University of Chicago Press, vol. 47(2), pages 231-243, April.
    4. Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
    5. Martin R. Young, 1998. "A Minimax Portfolio Selection Rule with Linear Programming Solution," Management Science, INFORMS, vol. 44(5), pages 673-683, May.
    6. Luca Chiodi & Renata Mansini & Maria Speranza, 2003. "Semi-Absolute Deviation Rule for Mutual Funds Portfolio Selection," Annals of Operations Research, Springer, vol. 124(1), pages 245-265, November.
    7. Hans Kellerer & Renata Mansini & M. Speranza, 2000. "Selecting Portfolios with Fixed Costs and Minimum Transaction Lots," Annals of Operations Research, Springer, vol. 99(1), pages 287-304, December.
    8. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    9. Pogue, G A, 1970. "An Extension of the Markowitz Portfolio Selection Model to Include Variable Transactions' Costs, Short Sales, Leverage Policies and Taxes," Journal of Finance, American Finance Association, vol. 25(5), pages 1005-1027, December.
    10. Renata Mansini & Włodzimierz Ogryczak & M. Speranza, 2007. "Conditional value at risk and related linear programming models for portfolio optimization," Annals of Operations Research, Springer, vol. 152(1), pages 227-256, July.
    11. Gerard Gennotte & Alan Jung, 1994. "Investment Strategies under Transaction Costs: The Finite Horizon Case," Management Science, INFORMS, vol. 40(3), pages 385-404, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    2. Björn Fastrich & Peter Winker, 2012. "Robust portfolio optimization with a hybrid heuristic algorithm," Computational Management Science, Springer, vol. 9(1), pages 63-88, February.
    3. Filippi, C. & Guastaroba, G. & Speranza, M.G., 2016. "A heuristic framework for the bi-objective enhanced index tracking problem," Omega, Elsevier, vol. 65(C), pages 122-137.
    4. Woodside-Oriakhi, M. & Lucas, C. & Beasley, J.E., 2013. "Portfolio rebalancing with an investment horizon and transaction costs," Omega, Elsevier, vol. 41(2), pages 406-420.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Woodside-Oriakhi, M. & Lucas, C. & Beasley, J.E., 2013. "Portfolio rebalancing with an investment horizon and transaction costs," Omega, Elsevier, vol. 41(2), pages 406-420.
    2. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    3. Angelelli, Enrico & Mansini, Renata & Speranza, M. Grazia, 2008. "A comparison of MAD and CVaR models with real features," Journal of Banking & Finance, Elsevier, vol. 32(7), pages 1188-1197, July.
    4. Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2015. "Linear vs. quadratic portfolio selection models with hard real-world constraints," Computational Management Science, Springer, vol. 12(3), pages 345-370, July.
    5. Buckley, Winston S. & Brown, Garfield O. & Marshall, Mario, 2012. "A mispricing model of stocks under asymmetric information," European Journal of Operational Research, Elsevier, vol. 221(3), pages 584-592.
    6. Zhang, Xili & Zhang, Weiguo & Xiao, Weilin, 2013. "Multi-period portfolio optimization under possibility measures," Economic Modelling, Elsevier, vol. 35(C), pages 401-408.
    7. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    8. Cristiano Arbex Valle, 2024. "Portfolio optimisation: bridging the gap between theory and practice," Papers 2407.00887, arXiv.org, revised Sep 2024.
    9. Areski Cousin & J'er^ome Lelong & Tom Picard, 2023. "Mean-variance dynamic portfolio allocation with transaction costs: a Wiener chaos expansion approach," Papers 2305.16152, arXiv.org, revised Jun 2023.
    10. Renata Mansini & Włodzimierz Ogryczak & M. Speranza, 2007. "Conditional value at risk and related linear programming models for portfolio optimization," Annals of Operations Research, Springer, vol. 152(1), pages 227-256, July.
    11. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.
    12. Areski Cousin & Jérôme Lelong & Tom Picard, 2023. "Mean-variance dynamic portfolio allocation with transaction costs: a Wiener chaos expansion approach," Working Papers hal-04086378, HAL.
    13. Gianfranco Guastaroba & Renata Mansini & Wlodzimierz Ogryczak & M. Grazia Speranza, 2020. "Enhanced index tracking with CVaR-based ratio measures," Annals of Operations Research, Springer, vol. 292(2), pages 883-931, September.
    14. Wlodzimierz Ogryczak & Michał Przyłuski & Tomasz Śliwiński, 2017. "Efficient optimization of the reward-risk ratio with polyhedral risk measures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(3), pages 625-653, December.
    15. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    16. Amy Givler Chapman & John E. Mitchell, 2018. "A fair division approach to humanitarian logistics inspired by conditional value-at-risk," Annals of Operations Research, Springer, vol. 262(1), pages 133-151, March.
    17. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    18. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    19. Zhang, Wei-Guo & Liu, Yong-Jun & Xu, Wei-Jun, 2012. "A possibilistic mean-semivariance-entropy model for multi-period portfolio selection with transaction costs," European Journal of Operational Research, Elsevier, vol. 222(2), pages 341-349.
    20. Huhtala, Heli, 2008. "Along but beyond mean-variance: Utility maximization in a semimartingale model," Bank of Finland Research Discussion Papers 5/2008, Bank of Finland.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:33:y:2009:i:3:p:237-262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.