IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v62y2023i4d10.1007_s10614-022-10313-y.html
   My bibliography  Save this article

Estimation of Rank-Ordered Regret Minimization Models

Author

Listed:
  • Changbiao Liu

    (Guangxi University of Finance and Economics)

  • Yuling Li

    (Beijing Normal University)

Abstract

This paper considers the estimation of random regret minimization models using rank-ordered choice data. By analyzing Monte Carlo simulations results, we find that the efficiency increases as we use additional information on the ranking. Compared with the multinomial logit model with utility maximization, the simulation results show that the standard random regret minimization model is slightly worse than the multinomial logit model based on both the mean bias and root mean squared error of the estimator of the model parameter $${{\varvec{\beta }}}$$ β . When using long ranking choice data to estimate the random regret minimization model, based on the mean bias and root mean squared error of the estimator, we find that the rank-ordered random regret minimization model has advantages over the multinomial logit model and the standard random regret minimization model. Analysis of real data shows that our method is very effective in estimating model parameters.

Suggested Citation

  • Changbiao Liu & Yuling Li, 2023. "Estimation of Rank-Ordered Regret Minimization Models," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1611-1630, December.
  • Handle: RePEc:kap:compec:v:62:y:2023:i:4:d:10.1007_s10614-022-10313-y
    DOI: 10.1007/s10614-022-10313-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-022-10313-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-022-10313-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matthew J. Beck & Caspar G. Chorus & John M. Rose & David A. Hensher, 2013. "Vehicle Purchasing Behaviour of Individuals and Groups: Regret or Reward?," Journal of Transport Economics and Policy, University of Bath, vol. 47(3), pages 475-492, September.
    2. Boeri, Marco & Longo, Alberto, 2017. "The importance of regret minimization in the choice for renewable energy programmes: Evidence from a discrete choice experiment," Energy Economics, Elsevier, vol. 63(C), pages 253-260.
    3. Loomes, Graham & Sugden, Robert, 1982. "Regret Theory: An Alternative Theory of Rational Choice under Uncertainty," Economic Journal, Royal Economic Society, vol. 92(368), pages 805-824, December.
    4. Caspar Chorus & Michel Bierlaire, 2013. "An empirical comparison of travel choice models that capture preferences for compromise alternatives," Transportation, Springer, vol. 40(3), pages 549-562, May.
    5. Dries F. Benoit & Stefan Van Aelst & Dirk Van den Poel, 2016. "Outlier‐Robust Bayesian Multinomial Choice Modeling," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1445-1466, November.
    6. Lane F. Burgette & Erik V. Nordheim, 2012. "The Trace Restriction: An Alternative Identification Strategy for the Bayesian Multinomial Probit Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 404-410, February.
    7. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, April.
    8. Yan, Jin & Yoo, Hong Il, 2019. "Semiparametric estimation of the random utility model with rank-ordered choice data," Journal of Econometrics, Elsevier, vol. 211(2), pages 414-438.
    9. Greg M. Allenby & Peter E. Rossi, 1991. "Quality Perceptions and Asymmetric Switching Between Brands," Marketing Science, INFORMS, vol. 10(3), pages 185-204.
    10. Dennis Fok & Richard Paap & Bram Van Dijk, 2012. "A Rank‐Ordered Logit Model With Unobserved Heterogeneity In Ranking Capabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(5), pages 831-846, August.
    11. Chorus, Caspar G. & Arentze, Theo A. & Timmermans, Harry J.P., 2008. "A Random Regret-Minimization model of travel choice," Transportation Research Part B: Methodological, Elsevier, vol. 42(1), pages 1-18, January.
    12. Arie Beresteanu & Federico Zincenko, 2018. "Efficiency Gains in Rank†ordered Multinomial Logit Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 80(1), pages 122-134, February.
    13. Hauser, John R & Wernerfelt, Birger, 1990. "An Evaluation Cost Model of Consideration Sets," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 16(4), pages 393-408, March.
    14. Skelton, Alexandra C.H. & Allwood, Julian M., 2017. "Questioning demand: A study of regretted purchases in Great Britain," Ecological Economics, Elsevier, vol. 131(C), pages 499-509.
    15. Beggs, S. & Cardell, S. & Hausman, J., 1981. "Assessing the potential demand for electric cars," Journal of Econometrics, Elsevier, vol. 17(1), pages 1-19, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chorus, Caspar & van Cranenburgh, Sander & Dekker, Thijs, 2014. "Random regret minimization for consumer choice modeling: Assessment of empirical evidence," Journal of Business Research, Elsevier, vol. 67(11), pages 2428-2436.
    2. Sunghoon Jang & Soora Rasouli & Harry Timmermans, 2017. "Incorporating psycho-physical mapping into random regret choice models: model specifications and empirical performance assessments," Transportation, Springer, vol. 44(5), pages 999-1019, September.
    3. Soora Rasouli & Harry Timmermans, 2017. "Specification of regret-based models of choice behaviour: formal analyses and experimental design based evidence," Transportation, Springer, vol. 44(6), pages 1555-1576, November.
    4. Peng Jing & Mengxuan Zhao & Meiling He & Long Chen, 2018. "Travel Mode and Travel Route Choice Behavior Based on Random Regret Minimization: A Systematic Review," Sustainability, MDPI, vol. 10(4), pages 1-20, April.
    5. Baltas, George & Doyle, Peter, 2001. "Random utility models in marketing research: a survey," Journal of Business Research, Elsevier, vol. 51(2), pages 115-125, February.
    6. Yan, Jin & Yoo, Hong Il, 2019. "Semiparametric estimation of the random utility model with rank-ordered choice data," Journal of Econometrics, Elsevier, vol. 211(2), pages 414-438.
    7. Arie Beresteanu, 2016. "Efficeincy Gains in Rank-ordered Multinomial Logit Models," Working Paper 5878, Department of Economics, University of Pittsburgh.
    8. van Cranenburgh, Sander & Guevara, Cristian Angelo & Chorus, Caspar G., 2015. "New insights on random regret minimization models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 91-109.
    9. Fernandez Pernett, Stephanie & Amaya, Johanna & Arellana, Julián & Cantillo, Victor, 2022. "Questioning the implication of the utility-maximization assumption for the estimation of deprivation cost functions after disasters," International Journal of Production Economics, Elsevier, vol. 247(C).
    10. Ben Aoki-Sherwood & Catherine Bregou & David Liben-Nowell & Kiran Tomlinson & Thomas Zeng, 2024. "Bounding Consideration Probabilities in Consider-Then-Choose Ranking Models," Papers 2401.11016, arXiv.org.
    11. Chorus, Caspar G., 2014. "A Generalized Random Regret Minimization model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 224-238.
    12. Kim, Jinhee & Rasouli, Soora & Timmermans, Harry, 2017. "Satisfaction and uncertainty in car-sharing decisions: An integration of hybrid choice and random regret-based models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 13-33.
    13. Lim, Jooyoung & Hahn, Minhi, 2020. "Regulatory focus and decision rules: Are prevention-focused consumers regret minimizers?," Journal of Business Research, Elsevier, vol. 120(C), pages 343-350.
    14. Caspar G. Chorus, 2014. "Capturing alternative decision rules in travel choice models: a critical discussion," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 13, pages 290-310, Edward Elgar Publishing.
    15. Rub'en Loaiza-Maya & Didier Nibbering, 2022. "Fast variational Bayes methods for multinomial probit models," Papers 2202.12495, arXiv.org, revised Oct 2022.
    16. Chorus, Caspar G., 2014. "Benefit of adding an alternative to one׳s choice set: A regret minimization perspective," Journal of choice modelling, Elsevier, vol. 13(C), pages 49-59.
    17. Gopindra Sivakumar Nair & Sebastian Astroza & Chandra R. Bhat & Sara Khoeini & Ram M. Pendyala, 2018. "An application of a rank ordered probit modeling approach to understanding level of interest in autonomous vehicles," Transportation, Springer, vol. 45(6), pages 1623-1637, November.
    18. Hensher, David A. & Ho, Chinh & Mulley, Corinne, 2015. "Identifying resident preferences for bus-based and rail-based investments as a complementary buy in perspective to inform project planning prioritisation," Journal of Transport Geography, Elsevier, vol. 46(C), pages 1-9.
    19. Anoek Castelein & Dennis Fok & Richard Paap, 2020. "A multinomial and rank-ordered logit model with inter- and intra-individual heteroscedasticity," Tinbergen Institute Discussion Papers 20-069/III, Tinbergen Institute.
    20. Delle Site, Paolo & Kilani, Karim & Gatta, Valerio & Marcucci, Edoardo & de Palma, André, 2019. "Estimation of consistent Logit and Probit models using best, worst and best–worst choices," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 87-106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:62:y:2023:i:4:d:10.1007_s10614-022-10313-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.