IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2401.11016.html
   My bibliography  Save this paper

Bounding Consideration Probabilities in Consider-Then-Choose Ranking Models

Author

Listed:
  • Ben Aoki-Sherwood
  • Catherine Bregou
  • David Liben-Nowell
  • Kiran Tomlinson
  • Thomas Zeng

Abstract

A common theory of choice posits that individuals make choices in a two-step process, first selecting some subset of the alternatives to consider before making a selection from the resulting consideration set. However, inferring unobserved consideration sets (or item consideration probabilities) in this "consider then choose" setting poses significant challenges, because even simple models of consideration with strong independence assumptions are not identifiable, even if item utilities are known. We consider a natural extension of consider-then-choose models to a top-$k$ ranking setting, where we assume rankings are constructed according to a Plackett-Luce model after sampling a consideration set. While item consideration probabilities remain non-identified in this setting, we prove that knowledge of item utilities allows us to infer bounds on the relative sizes of consideration probabilities. Additionally, given a condition on the expected consideration set size, we derive absolute upper and lower bounds on item consideration probabilities. We also provide algorithms to tighten those bounds on consideration probabilities by propagating inferred constraints. Thus, we show that we can learn useful information about consideration probabilities despite not being able to identify them precisely. We demonstrate our methods on a ranking dataset from a psychology experiment with two different ranking tasks (one with fixed consideration sets and one with unknown consideration sets). This combination of data allows us to estimate utilities and then learn about unknown consideration probabilities using our bounds.

Suggested Citation

  • Ben Aoki-Sherwood & Catherine Bregou & David Liben-Nowell & Kiran Tomlinson & Thomas Zeng, 2024. "Bounding Consideration Probabilities in Consider-Then-Choose Ranking Models," Papers 2401.11016, arXiv.org.
  • Handle: RePEc:arx:papers:2401.11016
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2401.11016
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paola Manzini & Marco Mariotti, 2014. "Stochastic Choice and Consideration Sets," Econometrica, Econometric Society, vol. 82(3), pages 1153-1176, May.
    2. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, September.
    3. Hausman, Jerry A. & Ruud, Paul A., 1987. "Specifying and testing econometric models for rank-ordered data," Journal of Econometrics, Elsevier, vol. 34(1-2), pages 83-104.
    4. Dennis Fok & Richard Paap & Bram Van Dijk, 2012. "A Rank‐Ordered Logit Model With Unobserved Heterogeneity In Ranking Capabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(5), pages 831-846, August.
    5. Matias D. Cattaneo & Xinwei Ma & Yusufcan Masatlioglu & Elchin Suleymanov, 2020. "A Random Attention Model," Journal of Political Economy, University of Chicago Press, vol. 128(7), pages 2796-2836.
    6. Hauser, John R & Wernerfelt, Birger, 1990. "An Evaluation Cost Model of Consideration Sets," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 16(4), pages 393-408, March.
    7. Pradeep K. Chintagunta & Harikesh S. Nair, 2011. "Structural Workshop Paper --Discrete-Choice Models of Consumer Demand in Marketing," Marketing Science, INFORMS, vol. 30(6), pages 977-996, November.
    8. Basar, Gözen & Bhat, Chandra, 2004. "A parameterized consideration set model for airport choice: an application to the San Francisco Bay Area," Transportation Research Part B: Methodological, Elsevier, vol. 38(10), pages 889-904, December.
    9. Horne, Matt & Jaccard, Mark & Tiedemann, Ken, 2005. "Improving behavioral realism in hybrid energy-economy models using discrete choice studies of personal transportation decisions," Energy Economics, Elsevier, vol. 27(1), pages 59-77, January.
    10. Marco A. Palma, 2017. "Improving the prediction of ranking data," Empirical Economics, Springer, vol. 53(4), pages 1681-1710, December.
    11. R. L. Plackett, 1975. "The Analysis of Permutations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 24(2), pages 193-202, June.
    12. Jason Abaluck & Abi Adams-Prassl, 2021. "What do Consumers Consider Before They Choose? Identification from Asymmetric Demand Responses," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 136(3), pages 1611-1663.
    13. Beggs, S. & Cardell, S. & Hausman, J., 1981. "Assessing the potential demand for electric cars," Journal of Econometrics, Elsevier, vol. 17(1), pages 1-19, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helmers, Christian & Krishnan, Pramila & Patnam, Manasa, 2019. "Attention and saliency on the internet: Evidence from an online recommendation system," Journal of Economic Behavior & Organization, Elsevier, vol. 161(C), pages 216-242.
    2. Levon Barseghyan & Maura Coughlin & Francesca Molinari & Joshua C. Teitelbaum, 2021. "Heterogeneous Choice Sets and Preferences," Econometrica, Econometric Society, vol. 89(5), pages 2015-2048, September.
    3. Patrick Ding & Guido Imbens & Zhaonan Qu & Yinyu Ye, 2024. "Computationally Efficient Estimation of Large Probit Models," Papers 2407.09371, arXiv.org, revised Sep 2024.
    4. Samare P. I. Huls & Emily Lancsar & Bas Donkers & Jemimah Ride, 2022. "Two for the price of one: If moving beyond traditional single‐best discrete choice experiments, should we use best‐worst, best‐best or ranking for preference elicitation?," Health Economics, John Wiley & Sons, Ltd., vol. 31(12), pages 2630-2647, December.
    5. José L. Oviedo & Hong Il Yoo, 2017. "A Latent Class Nested Logit Model for Rank-Ordered Data with Application to Cork Oak Reforestation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(4), pages 1021-1051, December.
    6. Yoo, Hong Il & Doiron, Denise, 2013. "The use of alternative preference elicitation methods in complex discrete choice experiments," Journal of Health Economics, Elsevier, vol. 32(6), pages 1166-1179.
    7. Roy Allen, 2024. "Exogenous Consideration and Extended Random Utility," Papers 2405.13945, arXiv.org.
    8. Lu, Zhentong, 2022. "Estimating multinomial choice models with unobserved choice sets," Journal of Econometrics, Elsevier, vol. 226(2), pages 368-398.
    9. Marco A. Palma, 2017. "Improving the prediction of ranking data," Empirical Economics, Springer, vol. 53(4), pages 1681-1710, December.
    10. Kovach, Matthew & Suleymanov, Elchin, 2023. "Reference dependence and random attention," Journal of Economic Behavior & Organization, Elsevier, vol. 215(C), pages 421-441.
    11. Gopindra Sivakumar Nair & Sebastian Astroza & Chandra R. Bhat & Sara Khoeini & Ram M. Pendyala, 2018. "An application of a rank ordered probit modeling approach to understanding level of interest in autonomous vehicles," Transportation, Springer, vol. 45(6), pages 1623-1637, November.
    12. Kashaev, Nail & Aguiar, Victor H., 2022. "A random attention and utility model," Journal of Economic Theory, Elsevier, vol. 204(C).
    13. Anoek Castelein & Dennis Fok & Richard Paap, 2020. "A multinomial and rank-ordered logit model with inter- and intra-individual heteroscedasticity," Tinbergen Institute Discussion Papers 20-069/III, Tinbergen Institute.
    14. Crawford, Gregory S. & Griffith, Rachel & Iaria, Alessandro, 2021. "A survey of preference estimation with unobserved choice set heterogeneity," Journal of Econometrics, Elsevier, vol. 222(1), pages 4-43.
    15. Godager, Geir, 2012. "Birds of a feather flock together: A study of doctor–patient matching," Journal of Health Economics, Elsevier, vol. 31(1), pages 296-305.
    16. Siikamaki, Juha & Layton, David F., 2007. "Discrete choice survey experiments: A comparison using flexible methods," Journal of Environmental Economics and Management, Elsevier, vol. 53(1), pages 122-139, January.
    17. Kockelman, Kara M. & Podgorski, Kaethe & Bina, Michelle & Gadda, Shashank, 2009. "Public Perceptions of Pricing Existing Roads and Other Transportation Policies: The Texas Perspective," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 48(3).
    18. Hong il Yoo, 2012. "The perceived unreliability of rank-ordered data: an econometric origin and implications," Discussion Papers 2012-46, School of Economics, The University of New South Wales.
    19. David Walker-Jones, 2019. "Rational Inattention and Perceptual Distance," Papers 1909.00888, arXiv.org, revised Dec 2019.
    20. Levon Barseghyan & Francesca Molinari & Matthew Thirkettle, 2021. "Discrete Choice under Risk with Limited Consideration," American Economic Review, American Economic Association, vol. 111(6), pages 1972-2006, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2401.11016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.