IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v53y2019i1d10.1007_s10614-017-9737-x.html
   My bibliography  Save this article

Predicting Corporate Financial Failure Using Macroeconomic Variables and Accounting Data

Author

Listed:
  • Eduardo Acosta-González

    (University of Las Palmas de Gran Canaria)

  • Fernando Fernández-Rodríguez

    (University of Las Palmas de Gran Canaria)

  • Hicham Ganga

    (University of Las Palmas de Gran Canaria)

Abstract

Recent studies of the prediction of corporate financial failure have taken into account many factors, mostly corresponding to financial ratios derived from firms’ annual accounts. Nevertheless, the current crisis and the consequent exponential increase in rates of insolvency have made it clear that the phenomenon of bankruptcy cannot be explained without reference to macroeconomic variables; thus, the overall condition of the economy, and not just the internal financial ratios of firms, must be addressed. In this paper, focusing on the Spanish construction sector from 1995 to 2011, we analyse selected econometric models for predicting bankruptcy, in which both macroeconomic variables and financial ratios are employed. In view of the large number of variables with these characteristics, which are frequently correlated with each other, and the consequent enormous number of models that would be obtained, we decided to focus on just five optimal econometric models for predicting the financial failure of firms, at 1, 2, 3, 4 and 5 years in advance, with a limited number of explanatory factors, to be selected by an automatic statistical procedure, guided solely by the data and based on a genetic algorithm. The empirical results obtained show that these econometric models are capable of achieving high rates of predictive success, both for in-sample and for out-of-sample predictions. In the latter case, failure and non-failure firms were classified with success rates of 98.5 and 82.5%, respectively, 1 year in advance. This predictive quality is maintained at 2, 3 and even 4 years in advance.

Suggested Citation

  • Eduardo Acosta-González & Fernando Fernández-Rodríguez & Hicham Ganga, 2019. "Predicting Corporate Financial Failure Using Macroeconomic Variables and Accounting Data," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 227-257, January.
  • Handle: RePEc:kap:compec:v:53:y:2019:i:1:d:10.1007_s10614-017-9737-x
    DOI: 10.1007/s10614-017-9737-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-017-9737-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-017-9737-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kevin D. Hoover & Stephen J. Perez, 1999. "Data mining reconsidered: encompassing and the general-to-specific approach to specification search," Econometrics Journal, Royal Economic Society, vol. 2(2), pages 167-191.
    2. Duffie, Darrell & Saita, Leandro & Wang, Ke, 2007. "Multi-period corporate default prediction with stochastic covariates," Journal of Financial Economics, Elsevier, vol. 83(3), pages 635-665, March.
    3. McKee, Thomas E. & Lensberg, Terje, 2002. "Genetic programming and rough sets: A hybrid approach to bankruptcy classification," European Journal of Operational Research, Elsevier, vol. 138(2), pages 436-451, April.
    4. Fama, Eugene F., 1986. "Term premiums and default premiums in money markets," Journal of Financial Economics, Elsevier, vol. 17(1), pages 175-196, September.
    5. Levy, Amnon & Bar-niv, Ran, 1987. "Macroeconomic aspects of firm bankruptcy analysis," Journal of Macroeconomics, Elsevier, vol. 9(3), pages 407-415.
    6. Teodosio Perez‐Amaral & Giampiero M. Gallo & Halbert White, 2003. "A Flexible Tool for Model Building: the Relevant Transformation of the Inputs Network Approach (RETINA)," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 821-838, December.
    7. Hernandez Tinoco, Mario & Wilson, Nick, 2013. "Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 394-419.
    8. Melicher, Ronald W. & Hearth, Douglas, 1988. "A time series analysis of aggregate business failure activity and credit conditions," Journal of Economics and Business, Elsevier, vol. 40(4), pages 319-333, November.
    9. M. Naresh Kumar & V. Sree Hari Rao, 2015. "A New Methodology for Estimating Internal Credit Risk and Bankruptcy Prediction under Basel II Regime," Papers 1502.00882, arXiv.org.
    10. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    11. Andrew Benito & Francisco Javier Delgado & Jorge Martínez Pagés, 2004. "A synthetic indicator of financial pressure for spanish firms," Working Papers 0411, Banco de España.
    12. Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.
    13. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    14. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    15. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    16. King, Gary & Honaker, James & Joseph, Anne & Scheve, Kenneth, 2001. "Analyzing Incomplete Political Science Data: An Alternative Algorithm for Multiple Imputation," American Political Science Review, Cambridge University Press, vol. 95(1), pages 49-69, March.
    17. Sala-i-Martin, Xavier, 1997. "I Just Ran Two Million Regressions," American Economic Review, American Economic Association, vol. 87(2), pages 178-183, May.
    18. Mousavi, Mohammad M. & Ouenniche, Jamal & Xu, Bing, 2015. "Performance evaluation of bankruptcy prediction models: An orientation-free super-efficiency DEA-based framework," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 64-75.
    19. Philip Bunn & Victoria Redwood, 2003. "Company accounts based modelling of business failures and the implications for financial stability," Bank of England working papers 210, Bank of England.
    20. Kar Yan Tam & Melody Y. Kiang, 1992. "Managerial Applications of Neural Networks: The Case of Bank Failure Predictions," Management Science, INFORMS, vol. 38(7), pages 926-947, July.
    21. M. Naresh Kumar & V. Sree Hari Rao, 2015. "A New Methodology for Estimating Internal Credit Risk and Bankruptcy Prediction under Basel II Regime," Computational Economics, Springer;Society for Computational Economics, vol. 46(1), pages 83-102, June.
    22. Johnsen, Thomajean & Melicher, Ronald W., 1994. "Predicting corporate bankruptcy and financial distress: Information value added by multinomial logit models," Journal of Economics and Business, Elsevier, vol. 46(4), pages 269-286, October.
    23. Lu, Yang-Cheng & Wei, Yu-Chen & Chang, Tsang-Yao, 2015. "The effects and applicability of financial media reports on corporate default ratings," International Review of Economics & Finance, Elsevier, vol. 36(C), pages 69-87.
    24. Frydman, Halina & Altman, Edward I & Kao, Duen-Li, 1985. "Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress," Journal of Finance, American Finance Association, vol. 40(1), pages 269-291, March.
    25. William F. Messier, Jr. & James V. Hansen, 1988. "Inducing Rules for Expert System Development: An Example Using Default and Bankruptcy Data," Management Science, INFORMS, vol. 34(12), pages 1403-1415, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gintare Giriūniene & Lukas Giriūnas & Mangirdas Morkunas & Laura Brucaite, 2019. "A Comparison on Leading Methodologies for Bankruptcy Prediction: The Case of the Construction Sector in Lithuania," Economies, MDPI, vol. 7(3), pages 1-20, August.
    2. Christos Alexakis & Michael Dowling & Konstantinos Eleftheriou & Michael Polemis, 2021. "Textual Machine Learning: An Application to Computational Economics Research," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 369-385, January.
    3. Fernández-Gámez, Manuel Ángel & Soria, Juan Antonio Campos & Santos, José António C. & Alaminos, David, 2020. "European country heterogeneity in financial distress prediction: An empirical analysis with macroeconomic and regulatory factors," Economic Modelling, Elsevier, vol. 88(C), pages 398-407.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suzan Hol, 2006. "The influence of the business cycle on bankruptcy probability," Discussion Papers 466, Statistics Norway, Research Department.
    2. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
    3. Şaban Çelik & Bora Aktan & Bruce Burton, 2022. "Firm dynamics and bankruptcy processes: A new theoretical model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 567-591, April.
    4. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    5. Eduardo Acosta-González & Fernando Fernández-Rodríguez, 2014. "Forecasting Financial Failure of Firms via Genetic Algorithms," Computational Economics, Springer;Society for Computational Economics, vol. 43(2), pages 133-157, February.
    6. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    7. M. A. Lagesh & Maram Srikanth & Debashis Acharya, 2018. "Corporate Performance during Business Cycles: Evidence from Indian Manufacturing Firms," Global Business Review, International Management Institute, vol. 19(5), pages 1261-1274, October.
    8. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
    9. Thomas E. Mckee, 2000. "Developing a bankruptcy prediction model via rough sets theory," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 9(3), pages 159-173, September.
    10. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    11. Bose, Indranil & Pal, Raktim, 2006. "Predicting the survival or failure of click-and-mortar corporations: A knowledge discovery approach," European Journal of Operational Research, Elsevier, vol. 174(2), pages 959-982, October.
    12. Thomas E. McKee, 2003. "Rough sets bankruptcy prediction models versus auditor signalling rates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(8), pages 569-586.
    13. Ana Paula Matias Gama & Helena Susana Amaral Geraldes, 2012. "Credit risk assessment and the impact of the New Basel Capital Accord on small and medium‐sized enterprises," Management Research Review, Emerald Group Publishing Limited, vol. 35(8), pages 727-749, July.
    14. Bhanu Pratap Singh & Alok Kumar Mishra, 2016. "Re-estimation and comparisons of alternative accounting based bankruptcy prediction models for Indian companies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-28, December.
    15. Bhanu Pratap SINGH & Alok Kumar MISHRA, 2019. "Sensitivity of bankruptcy prediction models to the change in econometric methods," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(3(620), A), pages 71-86, Autumn.
    16. Beynon, Malcolm J. & Peel, Michael J., 2001. "Variable precision rough set theory and data discretisation: an application to corporate failure prediction," Omega, Elsevier, vol. 29(6), pages 561-576, December.
    17. Paramonovs Sergejs & Ijevleva Ksenija, 2015. "The Role of Marketing Tools in the Improvement of Consumers Financial Literacy," Acta Universitatis Sapientiae, Economics and Business, Sciendo, vol. 27(1), pages 40-45, December.
    18. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Predicting US banks bankruptcy: logit versus Canonical Discriminant analysis," Post-Print halshs-01281948, HAL.
    19. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Predicting US banks bankruptcy: logit versus Canonical Discriminant analysis," Documents de travail du Centre d'Economie de la Sorbonne 16016, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    20. Soo Young Kim, 2018. "Predicting hospitality financial distress with ensemble models: the case of US hotels, restaurants, and amusement and recreation," Service Business, Springer;Pan-Pacific Business Association, vol. 12(3), pages 483-503, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:53:y:2019:i:1:d:10.1007_s10614-017-9737-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.