IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v52y2018i1d10.1007_s10614-017-9666-8.html
   My bibliography  Save this article

A Hybrid Metaheuristic for the Efficient Solution of GARCH with Trend Models

Author

Listed:
  • Lourdes Uribe
  • Benjamin Perea
  • Gerardo Hernández-del-Valle

    (Banco de México)

  • Oliver Schütze

Abstract

GARCH with trend models represent an efficient tool for the analysis of different commodities via testing for a linear trend in the volatilities. However, to obtain the volatility of a given time series an instance from a particular class of scalar optimization problems (SOPs) has to be solved which still represents a challenge for existing solvers. We propose here a novel algorithm for the efficient numerical solution of such global optimization problems. The algorithm, DE–N, is a hybrid of Differential Evolution and the Newton method. The latter is widely used for the treatment of GARCH related models, but cannot be used as standalone algorithm in this case as the SOPs contain many local minima. The algorithm is tested and compared to some state-of-the-art methods on a benchmark suite consisting of 42 monthtly agricultural commodities series of the Mexican Consumer Price Index basket as well as on two series related to international prices. The results indicate that DE–N is highly competitive and that it is able to reliably solve SOPs derived from GARCH with trend models.

Suggested Citation

  • Lourdes Uribe & Benjamin Perea & Gerardo Hernández-del-Valle & Oliver Schütze, 2018. "A Hybrid Metaheuristic for the Efficient Solution of GARCH with Trend Models," Computational Economics, Springer;Society for Computational Economics, vol. 52(1), pages 145-166, June.
  • Handle: RePEc:kap:compec:v:52:y:2018:i:1:d:10.1007_s10614-017-9666-8
    DOI: 10.1007/s10614-017-9666-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-017-9666-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-017-9666-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    2. Domowitz, Ian & Hakkio, Craig S., 1985. "Conditional variance and the risk premium in the foreign exchange market," Journal of International Economics, Elsevier, vol. 19(1-2), pages 47-66, August.
    3. Beck, Stacie E, 1993. "A Rational Expectations Model of Time Varying Risk Premia in Commodities Futures Markets: Theory and Evidence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 34(1), pages 149-168, February.
    4. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    5. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. Christian Bauer, 2007. "A Better Asymmetric Model of Changing Volatility in Stock and Exchange Rate Returns: Trend-GARCH," The European Journal of Finance, Taylor & Francis Journals, vol. 13(1), pages 65-87.
    8. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    9. Kusdhianto Setiawan & Koichi Maekawa, 2014. "Estimation Of Vector Error Correction Model With Garch Errors: Monte Carlo Simulation And Applications," EcoMod2014 7002, EcoMod.
    10. Stacie Beck, 2001. "Autoregressive conditional heteroscedasticity in commodity spot prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(2), pages 115-132.
    11. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    12. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guerrero-Escobar Santiago & Hernández-del-Valle Gerardo & Hernández Vega Marco & De-la-Mora Paula, 2023. "The Stock Market Effects of Committing and Setting GHG Targets: Evidence from the Science-Based Initiative," Working Papers 2023-15, Banco de México.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santiago Guerrero & Gerardo Hernández†del†Valle & Miriam Juárez†Torres, 2017. "Using a functional approach to test trending volatility in the price of Mexican and international agricultural products," Agricultural Economics, International Association of Agricultural Economists, vol. 48(1), pages 3-13, January.
    2. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    3. Hira Aftab & A. B. M. Rabiul Alam Beg, 2021. "Does Time Varying Risk Premia Exist in the International Bond Market? An Empirical Evidence from Australian and French Bond Market," IJFS, MDPI, vol. 9(1), pages 1-13, January.
    4. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    5. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    6. Hassanniakalager, Arman & Baker, Paul L. & Platanakis, Emmanouil, 2024. "A False Discovery Rate approach to optimal volatility forecasting model selection," International Journal of Forecasting, Elsevier, vol. 40(3), pages 881-902.
    7. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    8. Christian Bauer, 2007. "A Better Asymmetric Model of Changing Volatility in Stock and Exchange Rate Returns: Trend-GARCH," The European Journal of Finance, Taylor & Francis Journals, vol. 13(1), pages 65-87.
    9. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    10. Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
    11. Christensen, Bent Jesper & Nielsen, Morten Ørregaard & Zhu, Jie, 2010. "Long memory in stock market volatility and the volatility-in-mean effect: The FIEGARCH-M Model," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 460-470, June.
    12. Takaishi, Tetsuya, 2017. "Rational GARCH model: An empirical test for stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 451-460.
    13. Mehmet Sahiner, 2022. "Forecasting volatility in Asian financial markets: evidence from recursive and rolling window methods," SN Business & Economics, Springer, vol. 2(10), pages 1-74, October.
    14. Issler, João Victor, 1999. "Estimating and forecasting the volatility of Brazilian finance series using arch models (Preliminary Version)," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 347, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    15. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723, January.
    16. Turan Bali & Panayiotis Theodossiou, 2007. "A conditional-SGT-VaR approach with alternative GARCH models," Annals of Operations Research, Springer, vol. 151(1), pages 241-267, April.
    17. Halkos, George E. & Tsirivis, Apostolos S., 2019. "Effective energy commodity risk management: Econometric modeling of price volatility," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 234-250.
    18. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    19. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    20. Hentschel, Ludger, 1995. "All in the family Nesting symmetric and asymmetric GARCH models," Journal of Financial Economics, Elsevier, vol. 39(1), pages 71-104, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:52:y:2018:i:1:d:10.1007_s10614-017-9666-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.