IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v33y2009i2p193-207.html
   My bibliography  Save this article

Numerical Solutions to Dynamic Portfolio Problems: The Case for Value Function Iteration using Taylor Approximation

Author

Listed:
  • Lorenzo Garlappi
  • Georgios Skoulakis

Abstract

No abstract is available for this item.

Suggested Citation

  • Lorenzo Garlappi & Georgios Skoulakis, 2009. "Numerical Solutions to Dynamic Portfolio Problems: The Case for Value Function Iteration using Taylor Approximation," Computational Economics, Springer;Society for Computational Economics, vol. 33(2), pages 193-207, March.
  • Handle: RePEc:kap:compec:v:33:y:2009:i:2:p:193-207
    DOI: 10.1007/s10614-008-9156-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10614-008-9156-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10614-008-9156-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Michael W. Brandt & Amit Goyal & Pedro Santa-Clara & Jonathan R. Stroud, 2005. "A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 831-873.
    3. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, April.
    4. Jérôme B. Detemple & Ren Garcia & Marcel Rindisbacher, 2003. "A Monte Carlo Method for Optimal Portfolios," Journal of Finance, American Finance Association, vol. 58(1), pages 401-446, February.
    5. Willink, R., 2005. "Normal moments and Hermite polynomials," Statistics & Probability Letters, Elsevier, vol. 73(3), pages 271-275, July.
    6. Brennan, Michael J. & Schwartz, Eduardo S. & Lagnado, Ronald, 1997. "Strategic asset allocation," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1377-1403, June.
    7. Balduzzi, Pierluigi & Lynch, Anthony W., 1999. "Transaction costs and predictability: some utility cost calculations," Journal of Financial Economics, Elsevier, vol. 52(1), pages 47-78, April.
    8. John Y. Campbell & Luis M. Viceira, 1999. "Consumption and Portfolio Decisions when Expected Returns are Time Varying," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(2), pages 433-495.
    9. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    10. Nicholas Barberis, 2000. "Investing for the Long Run when Returns Are Predictable," Journal of Finance, American Finance Association, vol. 55(1), pages 225-264, February.
    11. Savits, Thomas H., 2006. "Some statistical applications of Faa di Bruno," Journal of Multivariate Analysis, Elsevier, vol. 97(10), pages 2131-2140, November.
    12. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Legendre, François & Togola, Djibril, 2016. "Explicit solutions to dynamic portfolio choice problems: A continuous-time detour," Economic Modelling, Elsevier, vol. 58(C), pages 627-641.
    2. Yichen Zhu & Marcos Escobar-Anel & Matt Davison, 2023. "A Polynomial-Affine Approximation for Dynamic Portfolio Choice," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 1177-1213, October.
    3. Rongju Zhang & Nicolas Langren'e & Yu Tian & Zili Zhu & Fima Klebaner & Kais Hamza, 2017. "Skewed target range strategy for multiperiod portfolio optimization using a two-stage least squares Monte Carlo method," Papers 1704.00416, arXiv.org, revised Jun 2019.
    4. Rongju Zhang & Nicolas Langren'e & Yu Tian & Zili Zhu & Fima Klebaner & Kais Hamza, 2016. "Dynamic portfolio optimization with liquidity cost and market impact: a simulation-and-regression approach," Papers 1610.07694, arXiv.org, revised Jun 2019.
    5. Robert Kirkby, 2017. "A Toolkit for Value Function Iteration," Computational Economics, Springer;Society for Computational Economics, vol. 49(1), pages 1-15, January.
    6. Mark Broadie & Weiwei Shen, 2017. "Numerical solutions to dynamic portfolio problems with upper bounds," Computational Management Science, Springer, vol. 14(2), pages 215-227, April.
    7. Fei Cong & Cornelis W. Oosterlee, 2017. "Accurate and Robust Numerical Methods for the Dynamic Portfolio Management Problem," Computational Economics, Springer;Society for Computational Economics, vol. 49(3), pages 433-458, March.
    8. Robert Kirkby, 2016. "Value Function Iteration Toolkit: In Matlab, on the GPU," EcoMod2016 9122, EcoMod.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael W. Brandt & Amit Goyal & Pedro Santa-Clara & Jonathan R. Stroud, 2005. "A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 831-873.
    2. Martin B. Haugh & Leonid Kogan & Jiang Wang, 2006. "Evaluating Portfolio Policies: A Duality Approach," Operations Research, INFORMS, vol. 54(3), pages 405-418, June.
    3. Mark Broadie & Weiwei Shen, 2016. "High-Dimensional Portfolio Optimization With Transaction Costs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-49, June.
    4. Guidolin, Massimo & Timmermann, Allan, 2007. "Asset allocation under multivariate regime switching," Journal of Economic Dynamics and Control, Elsevier, vol. 31(11), pages 3503-3544, November.
    5. Jessica A. Wachter, 2010. "Asset Allocation," Annual Review of Financial Economics, Annual Reviews, vol. 2(1), pages 175-206, December.
    6. George Chacko & Luis M. Viceira, 2005. "Dynamic Consumption and Portfolio Choice with Stochastic Volatility in Incomplete Markets," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1369-1402.
    7. Alois Geyer & Michael Hanke & Alex Weissensteiner, 2009. "A stochastic programming approach for multi-period portfolio optimization," Computational Management Science, Springer, vol. 6(2), pages 187-208, May.
    8. Mark E. Wohar & David E. Rapach, 2005. "Return Predictability and the Implied Intertemporal Hedging Demands for Stocks and Bonds: International Evidence," Computing in Economics and Finance 2005 329, Society for Computational Economics.
    9. Ferstl, Robert & Weissensteiner, Alex, 2011. "Asset-liability management under time-varying investment opportunities," Journal of Banking & Finance, Elsevier, vol. 35(1), pages 182-192, January.
    10. Francisco Gomes & Alexander Michaelides & Yuxin Zhang, 2022. "Tactical Target Date Funds," Management Science, INFORMS, vol. 68(4), pages 3047-3070, April.
    11. Engsted, Tom & Pedersen, Thomas Q., 2012. "Return predictability and intertemporal asset allocation: Evidence from a bias-adjusted VAR model," Journal of Empirical Finance, Elsevier, vol. 19(2), pages 241-253.
    12. Castañeda, Pablo & Reus, Lorenzo, 2019. "Suboptimal investment behavior and welfare costs: A simulation based approach," Finance Research Letters, Elsevier, vol. 30(C), pages 170-180.
    13. Wachter, Jessica A. & Warusawitharana, Missaka, 2009. "Predictable returns and asset allocation: Should a skeptical investor time the market?," Journal of Econometrics, Elsevier, vol. 148(2), pages 162-178, February.
    14. Luca Benzoni & Pierre Collin‐Dufresne & Robert S. Goldstein, 2007. "Portfolio Choice over the Life‐Cycle when the Stock and Labor Markets Are Cointegrated," Journal of Finance, American Finance Association, vol. 62(5), pages 2123-2167, October.
    15. LuisM. Viceira & John Y. Campbell, 2001. "Who Should Buy Long-Term Bonds?," American Economic Review, American Economic Association, vol. 91(1), pages 99-127, March.
    16. Gomes, Francisco & Michaelides, Alexander & Zhang, Yuxin, 2018. "Tactical Target Date Funds," CEPR Discussion Papers 13019, C.E.P.R. Discussion Papers.
    17. Cvitanic, Jaksa & Goukasian, Levon & Zapatero, Fernando, 2003. "Monte Carlo computation of optimal portfolios in complete markets," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 971-986, April.
    18. Suleyman Basak & Georgy Chabakauri, 2010. "Dynamic Mean-Variance Asset Allocation," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 2970-3016, August.
    19. John Y. Campbell, 2000. "Asset Pricing at the Millennium," Journal of Finance, American Finance Association, vol. 55(4), pages 1515-1567, August.
    20. Björn Bick & Holger Kraft & Claus Munk, 2013. "Solving Constrained Consumption-Investment Problems by Simulation of Artificial Market Strategies," Management Science, INFORMS, vol. 59(2), pages 485-503, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:33:y:2009:i:2:p:193-207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.