IDEAS home Printed from https://ideas.repec.org/a/kap/apfinm/v31y2024i1d10.1007_s10690-023-09407-w.html
   My bibliography  Save this article

Entropy Augmented Asset Pricing Model: Study on Indian Stock Market

Author

Listed:
  • Harshit Mishra

    (Indian Institute of Technology Kharagpur)

  • Parama Barai

    (Indian Institute of Technology Kharagpur)

Abstract

This study explores the effectiveness of entropy as a proxy of aggregate market risk, in explaining the cross-section of excess returns in asset pricing model, after controlling for established factors like market excess returns, size, book to market and momentum. The analysis considers Indian firms, given that Indian capital markets are characterized by relatively thin trading and higher volatility compared to developed markets. Entropy is estimated using Shannon Entropy. Factor mimicking portfolio is constructed based on Shannon Entropy, whose returns are used as additional risk factor in Fama–French–Carhart four factor asset pricing model. Gibbons Ross Shanken-F statistic and Adjusted R2 are used to judge the efficacy of this factor in capital asset pricing model. All analysis is done using built in functions of python. Market beta, size and Book-to-Market are found to impact equity returns significantly. Entropy factor also impacts equity returns, but to a lesser extent. Explanatory power of asset pricing model is found to improve after inclusion of entropy factor, as indicated by GRS-F Statistic and Adjusted R2. Entropy augmented Capital Asset Pricing Models can be used by firms to decide hurdle rate for project evaluation and by asset managers for identifying over-valued/under-valued securities. This is the first study that investigates the role of entropy in explaining asset returns, in addition to other established priced factors. This study is limited to Shannon Entropy only. Other forms of entropy may improve results further, and should be explored in future research.

Suggested Citation

  • Harshit Mishra & Parama Barai, 2024. "Entropy Augmented Asset Pricing Model: Study on Indian Stock Market," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 31(1), pages 81-99, March.
  • Handle: RePEc:kap:apfinm:v:31:y:2024:i:1:d:10.1007_s10690-023-09407-w
    DOI: 10.1007/s10690-023-09407-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10690-023-09407-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10690-023-09407-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bekiros, Stelios & Marcellino, Massimiliano, 2013. "The multiscale causal dynamics of foreign exchange markets," Journal of International Money and Finance, Elsevier, vol. 33(C), pages 282-305.
    2. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    3. Ahmadi-Javid, Amir & Fallah-Tafti, Malihe, 2019. "Portfolio optimization with entropic value-at-risk," European Journal of Operational Research, Elsevier, vol. 279(1), pages 225-241.
    4. Bakshi, Gurdip & Chabi-Yo, Fousseni, 2019. "New Entropy Restrictions and the Quest for Better-Specified Asset-Pricing Models," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 54(6), pages 2517-2541, December.
    5. A. Dionisio & R. Menezes & D. A. Mendes, 2006. "An econophysics approach to analyse uncertainty in financial markets: an application to the Portuguese stock market," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 50(1), pages 161-164, March.
    6. Tobias Adrian & Joshua Rosenberg, 2008. "Stock Returns and Volatility: Pricing the Short‐Run and Long‐Run Components of Market Risk," Journal of Finance, American Finance Association, vol. 63(6), pages 2997-3030, December.
    7. Luis García-Feijóo & Ariel M. Viale, 2022. "A simple robust asset pricing model under statistical ambiguity," Quantitative Finance, Taylor & Francis Journals, vol. 22(5), pages 861-869, May.
    8. R. Jared Delisle & James S. Doran & David R. Peterson, 2011. "Asymmetric pricing of implied systematic volatility in the cross‐section of expected returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 31(1), pages 34-54, January.
    9. Omid M. Ardakani, 2022. "Option pricing with maximum entropy densities: The inclusion of higher‐order moments," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1821-1836, October.
    10. Carhart, Mark M, 1997. "On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
    11. Lewellen, Jonathan & Nagel, Stefan & Shanken, Jay, 2010. "A skeptical appraisal of asset pricing tests," Journal of Financial Economics, Elsevier, vol. 96(2), pages 175-194, May.
    12. Omid Sabbaghi, 2015. "Volatility, distress risk, and the cross-section of portfolio returns," Review of Accounting and Finance, Emerald Group Publishing Limited, vol. 14(2), pages 149-171, May.
    13. Lo, Andrew W & MacKinlay, A Craig, 1990. "When Are Contrarian Profits Due to Stock Market Overreaction?," The Review of Financial Studies, Society for Financial Studies, vol. 3(2), pages 175-205.
    14. Campbell, John Y. & Giglio, Stefano & Polk, Christopher & Turley, Robert, 2018. "An intertemporal CAPM with stochastic volatility," Journal of Financial Economics, Elsevier, vol. 128(2), pages 207-233.
    15. Omid Sabbaghi, 2015. "Volatility, distress risk, and the cross-section of portfolio returns," Review of Accounting and Finance, Emerald Group Publishing Limited, vol. 14(2), pages 149-171, May.
    16. Kevin C. Smith & Eric C. So, 2022. "Measuring Risk Information," Journal of Accounting Research, Wiley Blackwell, vol. 60(2), pages 375-426, May.
    17. Ahmed BenSaïda & Jose Arreola Hernandez & Houda Litimi & Seong-Min Yoon, 2022. "The influence of oil, gold and stock market index on US equity sectors," Applied Economics, Taylor & Francis Journals, vol. 54(6), pages 719-732, February.
    18. Labidi, Chiraz & Yaakoubi, Soumaya, 2016. "Investor sentiment and aggregate volatility pricing," The Quarterly Review of Economics and Finance, Elsevier, vol. 61(C), pages 53-63.
    19. Omid Sabbaghi, 2015. "Volatility, distress risk, and the cross-section of portfolio returns," Review of Accounting and Finance, Emerald Group Publishing Limited, vol. 14(2), pages 149-171, May.
    20. Efremidze, Levan & Stanley, Darrol J. & Kownatzki, Clemens, 2021. "Entropy trading strategies reveal inefficiencies in Japanese stock market," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 464-477.
    21. Kothari, S P & Shanken, Jay & Sloan, Richard G, 1995. "Another Look at the Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 50(1), pages 185-224, March.
    22. John Lintner, 1965. "Security Prices, Risk, And Maximal Gains From Diversification," Journal of Finance, American Finance Association, vol. 20(4), pages 587-615, December.
    23. Jiang, Lei & Wu, Ke & Zhou, Guofu, 2018. "Asymmetry in Stock Comovements: An Entropy Approach," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 53(4), pages 1479-1507, August.
    24. Andrew Ang & Robert J. Hodrick & Yuhang Xing & Xiaoyan Zhang, 2006. "The Cross‐Section of Volatility and Expected Returns," Journal of Finance, American Finance Association, vol. 61(1), pages 259-299, February.
    25. Robert B. Durand & Dominic Lim & J. Kenton Zumwalt, 2011. "Fear and the Fama‐French Factors," Financial Management, Financial Management Association International, vol. 40(2), pages 409-426, June.
    26. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    27. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    28. Dimpfl, Thomas & Peter, Franziska J., 2018. "Analyzing volatility transmission using group transfer entropy," Energy Economics, Elsevier, vol. 75(C), pages 368-376.
    29. Nikola Gradojevic & Marko Caric, 2017. "Predicting Systemic Risk with Entropic Indicators," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(1), pages 16-25, January.
    30. Banerjee, Prithviraj S. & Doran, James S. & Peterson, David R., 2007. "Implied volatility and future portfolio returns," Journal of Banking & Finance, Elsevier, vol. 31(10), pages 3183-3199, October.
    31. Lars A. Lochstoer & Tyler Muir, 2022. "Volatility Expectations and Returns," Journal of Finance, American Finance Association, vol. 77(2), pages 1055-1096, April.
    32. Fama, Eugene F & MacBeth, James D, 1973. "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 607-636, May-June.
    33. Chon, Sora & Kim, Jaeho, 2021. "Does the Financial Leverage Effect Depend on Volatility Regimes?," Finance Research Letters, Elsevier, vol. 39(C).
    34. Mihály Ormos & Dávid Zibriczky, 2014. "Entropy-Based Financial Asset Pricing," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-21, December.
    35. F. Benedetto & L. Mastroeni & P. Vellucci, 2021. "Modeling the flow of information between financial time-series by an entropy-based approach," Annals of Operations Research, Springer, vol. 299(1), pages 1235-1252, April.
    36. Eugene F. Fama & Kenneth R. French, 2016. "Dissecting Anomalies with a Five-Factor Model," The Review of Financial Studies, Society for Financial Studies, vol. 29(1), pages 69-103.
    37. Fama, Eugene F & French, Kenneth R, 1996. "Multifactor Explanations of Asset Pricing Anomalies," Journal of Finance, American Finance Association, vol. 51(1), pages 55-84, March.
    38. Mai, Van Anh (Vivian) & Ang, Tze Chuan ‘Chewie’ & Fang, Victor, 2016. "Aggregate volatility risk and the cross-section of stock returns: Australian evidence," Pacific-Basin Finance Journal, Elsevier, vol. 36(C), pages 134-149.
    39. Grauer, Robert R. & Janmaat, Johannus A., 2004. "The unintended consequences of grouping in tests of asset pricing models," Journal of Banking & Finance, Elsevier, vol. 28(12), pages 2889-2914, December.
    40. Woongki Lee & James L. Park & Bumjean Sohn, 2021. "Aggregate Volatility Risk and Empirical Factors: An International Study," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 57(5), pages 1489-1513, April.
    41. Jayawardena, Nirodha I. & Todorova, Neda & Li, Bin & Su, Jen-Je & Gau, Yin-Feng, 2022. "Risk-return trade-off in the Australian Securities Exchange: Accounting for overnight effects, realized higher moments, long-run relations, and fractional cointegration," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 384-401.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pati, Pratap Chandra & Rajib, Prabina & Barai, Parama, 2019. "The role of the volatility index in asset pricing: The case of the Indian stock market," The Quarterly Review of Economics and Finance, Elsevier, vol. 74(C), pages 336-346.
    2. Amit Goyal, 2012. "Empirical cross-sectional asset pricing: a survey," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 26(1), pages 3-38, March.
    3. Sakemoto, Ryuta, 2023. "The long-run risk premium in the intertemporal CAPM: International evidence," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 89(C).
    4. Fernando Rubio, 2005. "Eficiencia De Mercado, Administracion De Carteras De Fondos Y Behavioural Finance," Finance 0503028, University Library of Munich, Germany, revised 23 Jul 2005.
    5. Kim, Soohun & Skoulakis, Georgios, 2018. "Ex-post risk premia estimation and asset pricing tests using large cross sections: The regression-calibration approach," Journal of Econometrics, Elsevier, vol. 204(2), pages 159-188.
    6. Ciciretti, Rocco & Dalò, Ambrogio & Dam, Lammertjan, 2023. "The contributions of betas versus characteristics to the ESG premium," Journal of Empirical Finance, Elsevier, vol. 71(C), pages 104-124.
    7. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, January.
    8. Andrew Detzel, 2017. "Monetary Policy Surprises, Investment Opportunities, And Asset Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 40(3), pages 315-348, September.
    9. Fletcher, Jonathan, 2018. "Betas V characteristics: Do stock characteristics enhance the investment opportunity set in U.K. stock returns?," The North American Journal of Economics and Finance, Elsevier, vol. 46(C), pages 114-129.
    10. Du, Ding & Hu, Ou, 2012. "Foreign exchange volatility and stock returns," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(5), pages 1202-1216.
    11. Sainan Jin & Liangjun Su & Yonghui Zhang, 2015. "Nonparametric testing for anomaly effects in empirical asset pricing models," Empirical Economics, Springer, vol. 48(1), pages 9-36, February.
    12. Kolari, James W. & Huang, Jianhua Z. & Butt, Hilal Anwar & Liao, Huiling, 2022. "International tests of the ZCAPM asset pricing model," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    13. Nguyen, Duc Binh Benno & Prokopczuk, Marcel & Sibbertsen, Philipp, 2020. "The memory of stock return volatility: Asset pricing implications," Journal of Financial Markets, Elsevier, vol. 47(C).
    14. Boons, M.F., 2014. "Sorting out commodity and macroeconomic risk in expected stock returns," Other publications TiSEM 1ebdac58-bf37-499d-8835-1, Tilburg University, School of Economics and Management.
    15. Cakici, Nusret & Zaremba, Adam, 2023. "Recency bias and the cross-section of international stock returns," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 84(C).
    16. Huang, Tao & Li, Junye, 2019. "Option-Implied variance asymmetry and the cross-section of stock returns," Journal of Banking & Finance, Elsevier, vol. 101(C), pages 21-36.
    17. Kaserer Christoph & Hanauer Matthias X., 2017. "25 Jahre Fama-French-Modell: Erklärungsgehalt, Anomalien und praktische Implikationen," Perspektiven der Wirtschaftspolitik, De Gruyter, vol. 18(2), pages 98-116, June.
    18. DeMiguel, Victor & Martin-Utrera, Alberto & Nogales, Francisco J. & Uppal, Raman, 2017. "A Portfolio Perspective on the Multitude of Firm Characteristics," CEPR Discussion Papers 12417, C.E.P.R. Discussion Papers.
    19. Cakici, Nusret & Zaremba, Adam, 2022. "Salience theory and the cross-section of stock returns: International and further evidence," Journal of Financial Economics, Elsevier, vol. 146(2), pages 689-725.
    20. Zhong, Angel, 2018. "Idiosyncratic volatility in the Australian equity market," Pacific-Basin Finance Journal, Elsevier, vol. 50(C), pages 105-125.

    More about this item

    Keywords

    Capital asset pricing model; Priced risk factor; Aggregate market risk; Shannon entropy;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:apfinm:v:31:y:2024:i:1:d:10.1007_s10690-023-09407-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.