IDEAS home Printed from https://ideas.repec.org/a/cup/jfinqa/v53y2018i04p1479-1507_00.html
   My bibliography  Save this article

Asymmetry in Stock Comovements: An Entropy Approach

Author

Listed:
  • Jiang, Lei
  • Wu, Ke
  • Zhou, Guofu

Abstract

We provide an entropy approach for measuring the asymmetric comovement between the return on a single asset and the market return. This approach yields a model-free test for stock return asymmetry, generalizing the correlation-based test proposed by Hong, Tu, and Zhou (2007). Based on this test, we find that asymmetry is much more pervasive than previously thought. Moreover, our approach also provides an entropy-based measure of downside asymmetric comovement. In the cross section of stock returns, we find an asymmetry premium: Higher downside asymmetric comovement with the market indicates higher expected returns.

Suggested Citation

  • Jiang, Lei & Wu, Ke & Zhou, Guofu, 2018. "Asymmetry in Stock Comovements: An Entropy Approach," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 53(4), pages 1479-1507, August.
  • Handle: RePEc:cup:jfinqa:v:53:y:2018:i:04:p:1479-1507_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0022109018000340/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seok, Sangik & Cho, Hoon & Ryu, Doojin, 2024. "Dual effects of investor sentiment and uncertainty in financial markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 300-315.
    2. Linyu Cao & Ruili Sun & Tiefeng Ma & Conan Liu, 2023. "On Asymmetric Correlations and Their Applications in Financial Markets," JRFM, MDPI, vol. 16(3), pages 1-18, March.
    3. Guofu Zhou, 2018. "Measuring Investor Sentiment," Annual Review of Financial Economics, Annual Reviews, vol. 10(1), pages 239-259, November.
    4. Lassance, Nathan & Vrins, Frédéric, 2023. "Portfolio selection: A target-distribution approach," European Journal of Operational Research, Elsevier, vol. 310(1), pages 302-314.
    5. O‐Chia Chuang & Xiaojun Song & Abderrahim Taamouti, 2022. "Testing for Asymmetric Comovements," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(5), pages 1153-1180, October.
    6. Yue Chen & Juan Lin & Ximing Wu, 2022. "Revisiting the return‐volatility relationship of exchange rates: New evidence from offshore RMB," Pacific Economic Review, Wiley Blackwell, vol. 27(3), pages 277-294, August.
    7. Fousseni Chabi-Yo & Riccardo Colacito, 2019. "The Term Structures of Coentropy in International Financial Markets," Management Science, INFORMS, vol. 65(8), pages 3541-3558, August.
    8. Wang, Jianqiu & Wu, Ke & Pan, Jiening, 2024. "On the conditional performance of the IVOL anomaly," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 337-350.
    9. Sebastien Valeyre & Sofiane Aboura & Denis Grebenkov, 2019. "The Reactive Beta Model," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 42(1), pages 71-113, March.
    10. Cheema, Arbab K. & Eshraghi, Arman & Wang, Qingwei, 2023. "Macroeconomic news and price synchronicity," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 390-412.
    11. Alcock, Jamie & Sinagl, Petra, 2022. "International determinants of asymmetric dependence in investment returns," Journal of International Money and Finance, Elsevier, vol. 122(C).
    12. Harshit Mishra & Parama Barai, 2024. "Entropy Augmented Asset Pricing Model: Study on Indian Stock Market," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 31(1), pages 81-99, March.
    13. Chen, Dongxu & Wu, Ke & Zhu, Yifeng, 2022. "Stock return asymmetry in China," Pacific-Basin Finance Journal, Elsevier, vol. 73(C).
    14. Lei Jiang & Esfandiar Maasoumi & Jiening Pan & Ke Wu, 2018. "A test of general asymmetric dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(7), pages 1026-1043, November.
    15. Shahzad, Syed Jawad Hussain & Bouri, Elie & Kayani, Ghulam Mujtaba & Nasir, Rana Muhammad & Kristoufek, Ladislav, 2020. "Are clean energy stocks efficient? Asymmetric multifractal scaling behaviour," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    16. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2022. "Realized semibetas: Disentangling “good” and “bad” downside risks," Journal of Financial Economics, Elsevier, vol. 144(1), pages 227-246.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:jfinqa:v:53:y:2018:i:04:p:1479-1507_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/jfq .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.