IDEAS home Printed from https://ideas.repec.org/a/kap/apfinm/v25y2018i4d10.1007_s10690-018-9252-7.html
   My bibliography  Save this article

Applying Time Series Decomposition to Construct Index-Tracking Portfolio

Author

Listed:
  • Jun Nakayama

    (Hitotsubashi University Business School
    Nomura Asset Management Co., Ltd)

  • Daisuke Yokouchi

    (Hitotsubashi University Business School)

Abstract

This study proposes a new method for creating an index-tracking portfolio using time series decomposition. First, we construct index-tracking portfolios of stocks chosen because their price movements mimic that of the Dow-Jones Industrial Average. Our method utilizes similarities of constituent stocks to the benchmark that are assessed by distances of time series trends derived from decomposing original series. Although the portfolios chosen by our method reasonably tracked the performance of the benchmark, they did not surpass the clustering approach discussed in earlier studies. Therefore, we examined what causes tracking error and found that two causes for deficiencies in our similarity-based method, which are unintended irregular movements of holding stocks and highly correlated relationships within stocks in the portfolio. To overcome them and to improve tracking performance, we propose a similarity-balanced approach that is another index-tracking method with alternate use of similarity. Doing so improved the tracking performance by avoiding the problem of high correlation among the stocks chosen under the initial method.

Suggested Citation

  • Jun Nakayama & Daisuke Yokouchi, 2018. "Applying Time Series Decomposition to Construct Index-Tracking Portfolio," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 25(4), pages 341-352, December.
  • Handle: RePEc:kap:apfinm:v:25:y:2018:i:4:d:10.1007_s10690-018-9252-7
    DOI: 10.1007/s10690-018-9252-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10690-018-9252-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10690-018-9252-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diana Barro & Elio Canestrelli, 2009. "Tracking error: a multistage portfolio model," Annals of Operations Research, Springer, vol. 165(1), pages 47-66, January.
    2. Sergio Focardi & Frank Fabozzi, 2004. "A methodology for index tracking based on time-series clustering," Quantitative Finance, Taylor & Francis Journals, vol. 4(4), pages 417-425.
    3. Nikolaos S. Thomaidis, 2013. "On the application of cointegration analysis in enhanced indexing," Applied Economics Letters, Taylor & Francis Journals, vol. 20(4), pages 391-396, March.
    4. Sant’Anna, Leonardo R. & Filomena, Tiago P. & Caldeira, João F., 2017. "Index tracking and enhanced indexing using cointegration and correlation with endogenous portfolio selection," The Quarterly Review of Economics and Finance, Elsevier, vol. 65(C), pages 146-157.
    5. Dose, Christian & Cincotti, Silvano, 2005. "Clustering of financial time series with application to index and enhanced index tracking portfolio," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 145-151.
    6. Canakgoz, N.A. & Beasley, J.E., 2009. "Mixed-integer programming approaches for index tracking and enhanced indexation," European Journal of Operational Research, Elsevier, vol. 196(1), pages 384-399, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julio Cezar Soares Silva & Adiel Teixeira de Almeida Filho, 2023. "A systematic literature review on solution approaches for the index tracking problem in the last decade," Papers 2306.01660, arXiv.org, revised Jun 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sant’Anna, Leonardo R. & Filomena, Tiago P. & Caldeira, João F., 2017. "Index tracking and enhanced indexing using cointegration and correlation with endogenous portfolio selection," The Quarterly Review of Economics and Finance, Elsevier, vol. 65(C), pages 146-157.
    2. Yu Zheng & Bowei Chen & Timothy M. Hospedales & Yongxin Yang, 2019. "Index Tracking with Cardinality Constraints: A Stochastic Neural Networks Approach," Papers 1911.05052, arXiv.org, revised Nov 2019.
    3. Li, Qian & Bao, Liang, 2014. "Enhanced index tracking with multiple time-scale analysis," Economic Modelling, Elsevier, vol. 39(C), pages 282-292.
    4. Reza Bradrania & Davood Pirayesh Neghab & Mojtaba Shafizadeh, 2022. "State-dependent stock selection in index tracking: a machine learning approach," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 36(1), pages 1-28, March.
    5. Yu Zheng & Timothy M. Hospedales & Yongxin Yang, 2018. "Diversity and Sparsity: A New Perspective on Index Tracking," Papers 1809.01989, arXiv.org, revised Feb 2020.
    6. Renato Bruni & Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2013. "No arbitrage and a linear portfolio selection model," Economics Bulletin, AccessEcon, vol. 33(2), pages 1247-1258.
    7. Andrea Scozzari & Fabio Tardella & Sandra Paterlini & Thiemo Krink, 2013. "Exact and heuristic approaches for the index tracking problem with UCITS constraints," Annals of Operations Research, Springer, vol. 205(1), pages 235-250, May.
    8. Renato Bruni & Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2012. "A New Lp Model For Enhanced Indexation," Departmental Working Papers of Economics - University 'Roma Tre' 0168, Department of Economics - University Roma Tre.
    9. Chen, Qi-an & Hu, Qingyu & Yang, Hu & Qi, Kai, 2022. "A kind of new time-weighted nonnegative lasso index-tracking model and its application," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    10. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    11. Zhiping Chen & Xinkai Zhuang & Jia Liu, 2019. "A Sustainability-Oriented Enhanced Indexation Model with Regime Switching and Cardinality Constraint," Sustainability, MDPI, vol. 11(15), pages 1-14, July.
    12. Fengmin Xu & Meihua Wang & Yu-Hong Dai & Dachuan Xu, 2018. "A sparse enhanced indexation model with chance and cardinality constraints," Journal of Global Optimization, Springer, vol. 70(1), pages 5-25, January.
    13. Cesarone, Francesco & Lampariello, Lorenzo & Sagratella, Simone, 2019. "A risk-gain dominance maximization approach to enhanced index tracking," Finance Research Letters, Elsevier, vol. 29(C), pages 231-238.
    14. Ruchika Sehgal & Aparna Mehra, 2023. "Quantile Regression Based Enhanced Indexing with Portfolio Rebalancing," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(3), pages 721-742, September.
    15. Guastaroba, G. & Speranza, M.G., 2012. "Kernel Search: An application to the index tracking problem," European Journal of Operational Research, Elsevier, vol. 217(1), pages 54-68.
    16. Yang, Tingting & Huang, Xiaoxia, 2022. "Two new mean–variance enhanced index tracking models based on uncertainty theory," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    17. Leonardo Riegel Sant’Anna & Tiago Pascoal Filomena & Pablo Cristini Guedes & Denis Borenstein, 2017. "Index tracking with controlled number of assets using a hybrid heuristic combining genetic algorithm and non-linear programming," Annals of Operations Research, Springer, vol. 258(2), pages 849-867, November.
    18. Jiang, Pan & Perez, M. Fabricio, 2021. "Follow the leader: Index tracking with factor models," Journal of Empirical Finance, Elsevier, vol. 64(C), pages 337-350.
    19. Emilio Ricardo Carvalhais & Antonio Marcos Duarte Júnior, 2015. "Indexation of Fixed-Income Portfolios to the IMA-B," Brazilian Business Review, Fucape Business School, vol. 12(3), pages 116-142, May.
    20. Canakgoz, N.A. & Beasley, J.E., 2009. "Mixed-integer programming approaches for index tracking and enhanced indexation," European Journal of Operational Research, Elsevier, vol. 196(1), pages 384-399, July.

    More about this item

    Keywords

    Hierarchical clustering; Index-tracking; Locally weighted regression; Lowess; Portfolio management; Time series decomposition;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G23 - Financial Economics - - Financial Institutions and Services - - - Non-bank Financial Institutions; Financial Instruments; Institutional Investors

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:apfinm:v:25:y:2018:i:4:d:10.1007_s10690-018-9252-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.