IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v071i12.html
   My bibliography  Save this article

PerMallows: An R Package for Mallows and Generalized Mallows Models

Author

Listed:
  • Irurozki, Ekhine
  • Calvo, Borja
  • Lozano, Jose A.

Abstract

In this paper we present the R package PerMallows, which is a complete toolbox to work with permutations, distances and some of the most popular probability models for permutations: Mallows and the Generalized Mallows models. The Mallows model is an exponential location model, considered as analogous to the Gaussian distribution. It is based on the definition of a distance between permutations. The Generalized Mallows model is its best-known extension. The package includes functions for making inference, sampling and learning such distributions. The distances considered in PerMallows are Kendall's τ , Cayley, Hamming and Ulam.

Suggested Citation

  • Irurozki, Ekhine & Calvo, Borja & Lozano, Jose A., 2016. "PerMallows: An R Package for Mallows and Generalized Mallows Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 71(i12).
  • Handle: RePEc:jss:jstsof:v:071:i12
    DOI: http://hdl.handle.net/10.18637/jss.v071.i12
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v071i12/v71i12.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v071i12/PerMallows_1.12.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v071i12/v71i12.R
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v071.i12?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mingxuan Sun & Guy Lebanon & Paul Kidwell, 2012. "Estimating probabilities in recommendation systems," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 61(3), pages 471-492, May.
    2. Hatzinger, Reinhold & Dittrich, Regina, 2012. "prefmod: An R Package for Modeling Preferences Based on Paired Comparisons, Rankings, or Ratings," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i10).
    3. Lee, Paul H. & Yu, Philip L.H., 2012. "Mixtures of weighted distance-based models for ranking data with applications in political studies," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2486-2500.
    4. Ali, Alnur & Meilă, Marina, 2012. "Experiments with Kemeny ranking: What works when?," Mathematical Social Sciences, Elsevier, vol. 64(1), pages 28-40.
    5. Murphy, Thomas Brendan & Martin, Donal, 2003. "Mixtures of distance-based models for ranking data," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 645-655, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonella Plaia & Simona Buscemi & Mariangela Sciandra, 2021. "Consensus among preference rankings: a new weighted correlation coefficient for linear and weak orderings," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(4), pages 1015-1037, December.
    2. Pierpaolo D’Urso & Vincenzina Vitale, 2022. "A Kemeny Distance-Based Robust Fuzzy Clustering for Preference Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 600-647, November.
    3. Yeawon Yoo & Adolfo R. Escobedo, 2021. "A New Binary Programming Formulation and Social Choice Property for Kemeny Rank Aggregation," Decision Analysis, INFORMS, vol. 18(4), pages 296-320, December.
    4. Tianming Gao & Vasilii Erokhin, 2020. "Capturing a Complexity of Nutritional, Environmental, and Economic Impacts on Selected Health Parameters in the Russian High North," Sustainability, MDPI, vol. 12(5), pages 1-25, March.
    5. Heather L. Turner & Jacob Etten & David Firth & Ioannis Kosmidis, 2020. "Modelling rankings in R: the PlackettLuce package," Computational Statistics, Springer, vol. 35(3), pages 1027-1057, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierpaolo D’Urso & Vincenzina Vitale, 2022. "A Kemeny Distance-Based Robust Fuzzy Clustering for Preference Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 600-647, November.
    2. Biernacki, Christophe & Jacques, Julien, 2013. "A generative model for rank data based on insertion sort algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 162-176.
    3. Noelia Rico & Camino R. Vela & Raúl Pérez-Fernández & Irene Díaz, 2021. "Reducing the Computational Time for the Kemeny Method by Exploiting Condorcet Properties," Mathematics, MDPI, vol. 9(12), pages 1-12, June.
    4. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    5. Isobel Claire Gormley & Thomas Brendan Murphy, 2006. "Analysis of Irish third‐level college applications data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(2), pages 361-379, March.
    6. Guillote, Simon & Perron, Francois & Segers, Johan, 2018. "Bayesian Inference For Bivariate Ranks," LIDAM Discussion Papers ISBA 2018005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Bernard Monjardet, 2013. "Marc Barbut au pays des médianes," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00825005, HAL.
    8. Leonardo Egidi & Nicola Torelli, 2021. "Comparing Goal-Based and Result-Based Approaches in Modelling Football Outcomes," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 801-813, August.
    9. Kateri, Maria & Nikolov, Nikolay I., 2022. "A generalized Mallows model based on ϕ-divergence measures," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    10. Kiatsupaibul, Seksan & J. Hayter, Anthony & Liu, Wei, 2017. "Rank constrained distribution and moment computations," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 229-242.
    11. Alessandro Barbiero, 2021. "Inducing a desired value of correlation between two point-scale variables: a two-step procedure using copulas," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 307-334, June.
    12. Marie-Louise Lackner & Martin Lackner, 2017. "On the likelihood of single-peaked preferences," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 48(4), pages 717-745, April.
    13. Sprengholz, Philipp & Felgendreff, Lisa & Buyx, Alena & Betsch, Cornelia, 2023. "Toward future triage regulations: Investigating preferred allocation principles of the German public," Health Policy, Elsevier, vol. 134(C).
    14. Lee, Paul H. & Yu, Philip L.H., 2012. "Mixtures of weighted distance-based models for ranking data with applications in political studies," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2486-2500.
    15. Weichen Wu & Nynke Niezink & Brian Junker, 2022. "A diagnostic framework for the Bradley–Terry model," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 461-484, December.
    16. Tessa Haesevoets & Alain Van Hiel & Mario Pandelaere & Dries H. Bostyn & David De Cremer, 2017. "How much compensation is too much? An investigation of the effectiveness of financial overcompensation as a means to enhance customer loyalty," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 12(2), pages 183-197, March.
    17. Heather L. Turner & Jacob Etten & David Firth & Ioannis Kosmidis, 2020. "Modelling rankings in R: the PlackettLuce package," Computational Statistics, Springer, vol. 35(3), pages 1027-1057, September.
    18. D'Elia, Angela & Piccolo, Domenico, 2005. "A mixture model for preferences data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 49(3), pages 917-934, June.
    19. Azzini, Ivano & Munda, Giuseppe, 2020. "A new approach for identifying the Kemeny median ranking," European Journal of Operational Research, Elsevier, vol. 281(2), pages 388-401.
    20. Rico, Noelia & Vela, Camino R. & Díaz, Irene, 2023. "Reducing the time required to find the Kemeny ranking by exploiting a necessary condition for being a winner," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1323-1336.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:071:i12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.