IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v069i09.html
   My bibliography  Save this article

RobPer: An R Package to Calculate Periodograms for Light Curves Based on Robust Regression

Author

Listed:
  • Thieler, Anita M.
  • Fried, Roland
  • Rathjens, Jonathan

Abstract

An important task in astroparticle physics is the detection of periodicities in irregularly sampled time series, called light curves. The classic Fourier periodogram cannot deal with irregular sampling and with the measurement accuracies that are typically given for each observation of a light curve. Hence, methods to fit periodic functions using weighted regression were developed in the past to calculate periodograms. We present the R package RobPer which allows to combine different periodic functions and regression techniques to calculate periodograms. Possible regression techniques are least squares, least absolute deviations, least trimmed squares, M-, S- and τ -regression. Measurement accuracies can be taken into account including weights. Our periodogram function covers most of the approaches that have been tried earlier and provides new model-regression-combinations that have not been used before. To detect valid periods, RobPer applies an outlier search on the periodogram instead of using fixed critical values that are theoretically only justified in case of least squares regression, independent periodogram bars and a null hypothesis allowing only normal white noise. Finally, the package also includes a generator to generate artificial light curves.

Suggested Citation

  • Thieler, Anita M. & Fried, Roland & Rathjens, Jonathan, 2016. "RobPer: An R Package to Calculate Periodograms for Light Curves Based on Robust Regression," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 69(i09).
  • Handle: RePEc:jss:jstsof:v:069:i09
    DOI: http://hdl.handle.net/10.18637/jss.v069.i09
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v069i09/v69i09.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v069i09/RobPer_1.2.2.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v069i09/v69i09.R
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v069.i09?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mebane Jr., Walter R. & Sekhon, Jasjeet S., 2011. "Genetic Optimization Using Derivatives: The rgenoud Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 42(i11).
    2. Varadhan, Ravi & Gilbert, Paul, 2009. "BB: An R Package for Solving a Large System of Nonlinear Equations and for Optimizing a High-Dimensional Nonlinear Objective Function," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i04).
    3. Brenton Clarke & Peter McKinnon & Geoff Riley, 2012. "A fast robust method for fitting gamma distributions," Statistical Papers, Springer, vol. 53(4), pages 1001-1014, November.
    4. Peter Hall & Ming Li, 2006. "Using the periodogram to estimate period in nonparametric regression," Biometrika, Biometrika Trust, vol. 93(2), pages 411-424, June.
    5. Cristophe Croux & Catherine Dehon, 2003. "Estimators of the multiple correlation coefficient: Local robustness and confidence intervals," Statistical Papers, Springer, vol. 44(3), pages 315-334, July.
    6. Wang, Zhu, 2013. "cts: An R Package for Continuous Time Autoregressive Models via Kalman Filter," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 53(i05).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muñoz-Mas, Rafael & Vezza, Paolo & Alcaraz-Hernández, Juan Diego & Martínez-Capel, Francisco, 2016. "Risk of invasion predicted with support vector machines: A case study on northern pike (Esox Lucius, L.) and bleak (Alburnus alburnus, L.)," Ecological Modelling, Elsevier, vol. 342(C), pages 123-134.
    2. Kevin Ummel & Charles Fant, 2014. "Planning for Large-Scale Wind and Solar Power in South Africa: Identifying Cost-Effective Deployment Strategies Through Spatiotemporal Modelling," WIDER Working Paper Series wp-2014-121, World Institute for Development Economic Research (UNU-WIDER).
    3. Jasjeet Singh Sekhon & Richard D. Grieve, 2012. "A matching method for improving covariate balance in cost‐effectiveness analyses," Health Economics, John Wiley & Sons, Ltd., vol. 21(6), pages 695-714, June.
    4. Martin Gaynor & Nirav Mehta & Seth Richards-Shubik, 2023. "Optimal Contracting with Altruistic Agents: Medicare Payments for Dialysis Drugs," American Economic Review, American Economic Association, vol. 113(6), pages 1530-1571, June.
    5. Scrucca, Luca, 2013. "GA: A Package for Genetic Algorithms in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 53(i04).
    6. Pates, Nicholas J. & Kim, GwanSeon & Mark, Tyler B. & Ritter, Matthias, 2020. "Windfalls or wind falls? The Local Effects of Turbine Development on US Agricultural Land Values," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304611, Agricultural and Applied Economics Association.
    7. Legrand, Catherine & Munda, Marco & Janssen, P. & Duchateau, L., 2012. "A general class of time-varying coefficients models for right censored data," LIDAM Discussion Papers ISBA 2012041, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Erickson, Collin B. & Ankenman, Bruce E. & Sanchez, Susan M., 2018. "Comparison of Gaussian process modeling software," European Journal of Operational Research, Elsevier, vol. 266(1), pages 179-192.
    9. Zhang, Shibin, 2020. "Nonparametric Bayesian inference for the spectral density based on irregularly spaced data," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    10. Michael Vogt & Oliver Linton, 2014. "Nonparametric estimation of a periodic sequence in the presence of a smooth trend," Biometrika, Biometrika Trust, vol. 101(1), pages 121-140.
    11. Nathan H. Miller & Matthew Osborne, 2014. "Spatial differentiation and price discrimination in the cement industry: evidence from a structural model," RAND Journal of Economics, RAND Corporation, vol. 45(2), pages 221-247, June.
    12. Bella Vakulenko‐Lagun & Micha Mandel & Rebecca A. Betensky, 2020. "Inverse probability weighting methods for Cox regression with right‐truncated data," Biometrics, The International Biometric Society, vol. 76(2), pages 484-495, June.
    13. Chung Chang & Meng-Ke Hsieh & An Jen Chiang & Yi-Hsuan Tsai & Chia-Chiung Liu & Jiabin Chen, 2019. "Methods for estimating the optimal number and location of cut points in multivariate survival analysis: a statistical solution to the controversial effect of BMI," Computational Statistics, Springer, vol. 34(4), pages 1649-1674, December.
    14. Georgalos, Konstantinos & Paya, Ivan & Peel, David A., 2021. "On the contribution of the Markowitz model of utility to explain risky choice in experimental research," Journal of Economic Behavior & Organization, Elsevier, vol. 182(C), pages 527-543.
    15. Galea, Manuel & de Castro, Mário, 2017. "Robust inference in a linear functional model with replications using the t distribution," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 134-145.
    16. Driver, Charles C. & Oud, Johan H. L. & Voelkle, Manuel C., 2017. "Continuous Time Structural Equation Modeling with R Package ctsem," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i05).
    17. Nikoloulopoulos, Aristidis K., 2023. "Efficient and feasible inference for high-dimensional normal copula regression models," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    18. Predrag M. Popović & Miroslav M. Ristić & Aleksandar S. Nastić, 2016. "A geometric bivariate time series with different marginal parameters," Statistical Papers, Springer, vol. 57(3), pages 731-753, September.
    19. Božidar Popović & Saralees Nadarajah & Miroslav Ristić, 2013. "A new non-linear AR(1) time series model having approximate beta marginals," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(1), pages 71-92, January.
    20. Viana-Fons, Joan Dídac & Payá, Jorge, 2024. "HVAC system operation, consumption and compressor size optimization in urban buses of Mediterranean cities," Energy, Elsevier, vol. 296(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:069:i09. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.