IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v34y2019i4d10.1007_s00180-019-00908-9.html
   My bibliography  Save this article

Methods for estimating the optimal number and location of cut points in multivariate survival analysis: a statistical solution to the controversial effect of BMI

Author

Listed:
  • Chung Chang

    (National Sun Yat-sen University)

  • Meng-Ke Hsieh

    (National Sun Yat-sen University)

  • An Jen Chiang

    (Department of Obstetrics and Gynecology
    National Sun Yat-sen University)

  • Yi-Hsuan Tsai

    (National Sun Yat-sen University)

  • Chia-Chiung Liu

    (National Sun Yat-sen University)

  • Jiabin Chen

    (National Sun Yat-sen University
    Da-Yeh University)

Abstract

In clinical practice, researchers usually categorize continuous variables for risk assessment. Many algorithms have been developed to find one optimal cut point to group variables into two halves; however, there is often need to determine the optimal number of cut points and their locations at the same time. In this paper we proposed a new AIC criterion, where the AIC values were corrected with cross-validation and Monte Carlo method, to select the optimal number of cut points. In addition, the cross-validation and Monte Carlo methods were used to correct the p value and relative risk. To provide the biomedical researchers with an easy tool, we developed an R function that utilized the genetic algorithm to find the location of the optimal cut points. Furthermore, we conducted simulation experiments to study the performance of our proposed method. In the end we applied our method to study the effect of body mass index on cervical cancer survival, which had inconsistent reports in the literature.

Suggested Citation

  • Chung Chang & Meng-Ke Hsieh & An Jen Chiang & Yi-Hsuan Tsai & Chia-Chiung Liu & Jiabin Chen, 2019. "Methods for estimating the optimal number and location of cut points in multivariate survival analysis: a statistical solution to the controversial effect of BMI," Computational Statistics, Springer, vol. 34(4), pages 1649-1674, December.
  • Handle: RePEc:spr:compst:v:34:y:2019:i:4:d:10.1007_s00180-019-00908-9
    DOI: 10.1007/s00180-019-00908-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-019-00908-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-019-00908-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mebane Jr., Walter R. & Sekhon, Jasjeet S., 2011. "Genetic Optimization Using Derivatives: The rgenoud Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 42(i11).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simon Bussy & Mokhtar Z. Alaya & Anne‐Sophie Jannot & Agathe Guilloux, 2022. "Binacox: automatic cut‐point detection in high‐dimensional Cox model with applications in genetics," Biometrics, The International Biometric Society, vol. 78(4), pages 1414-1426, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muñoz-Mas, Rafael & Vezza, Paolo & Alcaraz-Hernández, Juan Diego & Martínez-Capel, Francisco, 2016. "Risk of invasion predicted with support vector machines: A case study on northern pike (Esox Lucius, L.) and bleak (Alburnus alburnus, L.)," Ecological Modelling, Elsevier, vol. 342(C), pages 123-134.
    2. Kevin Ummel & Charles Fant, 2014. "Planning for Large-Scale Wind and Solar Power in South Africa: Identifying Cost-Effective Deployment Strategies Through Spatiotemporal Modelling," WIDER Working Paper Series wp-2014-121, World Institute for Development Economic Research (UNU-WIDER).
    3. Jasjeet Singh Sekhon & Richard D. Grieve, 2012. "A matching method for improving covariate balance in cost‐effectiveness analyses," Health Economics, John Wiley & Sons, Ltd., vol. 21(6), pages 695-714, June.
    4. Scrucca, Luca, 2013. "GA: A Package for Genetic Algorithms in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 53(i04).
    5. Pates, Nicholas J. & Kim, GwanSeon & Mark, Tyler B. & Ritter, Matthias, 2020. "Windfalls or wind falls? The Local Effects of Turbine Development on US Agricultural Land Values," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304611, Agricultural and Applied Economics Association.
    6. Erickson, Collin B. & Ankenman, Bruce E. & Sanchez, Susan M., 2018. "Comparison of Gaussian process modeling software," European Journal of Operational Research, Elsevier, vol. 266(1), pages 179-192.
    7. Georgalos, Konstantinos & Paya, Ivan & Peel, David A., 2021. "On the contribution of the Markowitz model of utility to explain risky choice in experimental research," Journal of Economic Behavior & Organization, Elsevier, vol. 182(C), pages 527-543.
    8. Viana-Fons, Joan Dídac & Payá, Jorge, 2024. "HVAC system operation, consumption and compressor size optimization in urban buses of Mediterranean cities," Energy, Elsevier, vol. 296(C).
    9. Jonathan Karnon & Orla Caffrey & Clarabelle Pham & Richard Grieve & David Ben‐Tovim & Paul Hakendorf & Maria Crotty, 2013. "Applying Risk Adjusted Cost‐Effectiveness (Rac‐E) Analysis To Hospitals: Estimating The Costs And Consequences Of Variation In Clinical Practice," Health Economics, John Wiley & Sons, Ltd., vol. 22(6), pages 631-642, June.
    10. Owoyele, Opeoluwa & Pal, Pinaki, 2021. "A novel machine learning-based optimization algorithm (ActivO) for accelerating simulation-driven engine design," Applied Energy, Elsevier, vol. 285(C).
    11. Ghislain B. D. Aïhounton & Arne Henningsen & Neda Trifkovic, 2021. "Pesticide Handling and Human Health: Conventional and Organic Cotton Farming in Benin," IFRO Working Paper 2021/06, University of Copenhagen, Department of Food and Resource Economics.
    12. Henningsen, Arne & Mpeta, Daniel F. & Adem, Anwar S. & Kuzilwa, Joseph A. & Czekaj, Tomasz G., 2015. "The Effects of Contract Farming on Efficiency and Productivity of Small-Scare Sunflower Farmers in Tanzania," 2015 Conference, August 9-14, 2015, Milan, Italy 212478, International Association of Agricultural Economists.
    13. Thomas Aspinall & Adrian Gepp & Geoff Harris & Simone Kelly & Colette Southam & Bruce Vanstone, 2021. "Estimation of a term structure model of carbon prices through state space methods: The European Union emissions trading scheme," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(2), pages 3797-3819, June.
    14. Kirill V. Rostislav & Yury Yu. Ponomarev & Darya M. Radchenko, 2022. "Имитационная Пространственная Модель Развития Российских Городов," Russian Economic Development (in Russian), Gaidar Institute for Economic Policy, issue 5, pages 20-33, May.
    15. Isabelle Salle & Murat Yıldızoğlu, 2014. "Efficient Sampling and Meta-Modeling for Computational Economic Models," Computational Economics, Springer;Society for Computational Economics, vol. 44(4), pages 507-536, December.
    16. Baqun Zhang & Min Zhang, 2018. "C‐learning: A new classification framework to estimate optimal dynamic treatment regimes," Biometrics, The International Biometric Society, vol. 74(3), pages 891-899, September.
    17. Mullen, Katharine M., 2014. "Continuous Global Optimization in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 60(i06).
    18. Chaeryon Kang & Holly Janes & Ying Huang, 2014. "Combining biomarkers to optimize patient treatment recommendations," Biometrics, The International Biometric Society, vol. 70(3), pages 695-707, September.
    19. repec:jss:jstsof:42:i13 is not listed on IDEAS
    20. Carl Müller-Crepon & Philipp Hunziker, 2018. "New spatial data on ethnicity," Journal of Peace Research, Peace Research Institute Oslo, vol. 55(5), pages 687-698, September.
    21. Swait, Joffre, 2023. "Distribution-free estimation of individual parameter logit (IPL) models using combined evolutionary and optimization algorithms," Journal of choice modelling, Elsevier, vol. 47(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:34:y:2019:i:4:d:10.1007_s00180-019-00908-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.