IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v053i05.html
   My bibliography  Save this article

cts: An R Package for Continuous Time Autoregressive Models via Kalman Filter

Author

Listed:
  • Wang, Zhu

Abstract

We describe an R package cts for fitting a modified form of continuous time autoregressive model, which can be particularly useful with unequally sampled time series. The estimation is based on the application of the Kalman filter. The paper provides the methods and algorithms implemented in the package, including parameter estimation, spectral analysis, forecasting, model checking and Kalman smoothing. The package contains R functions which interface underlying Fortran routines. The package is applied to geophysical and medical data for illustration.

Suggested Citation

  • Wang, Zhu, 2013. "cts: An R Package for Continuous Time Autoregressive Models via Kalman Filter," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 53(i05).
  • Handle: RePEc:jss:jstsof:v:053:i05
    DOI: http://hdl.handle.net/10.18637/jss.v053.i05
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v053i05/v53i05.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v053i05/cts_1.0-15.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v053i05/v53i05.R
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v053.i05?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    2. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737, January.
    3. Zhu Wang & Wayne A. Woodward & Henry L. Gray, 2009. "The application of the Kalman filter to nonstationary time series through time deformation," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(5), pages 559-574, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefano Iacus & Lorenzo Mercuri, 2015. "Implementation of Lévy CARMA model in Yuima package," Computational Statistics, Springer, vol. 30(4), pages 1111-1141, December.
    2. Driver, Charles C. & Oud, Johan H. L. & Voelkle, Manuel C., 2017. "Continuous Time Structural Equation Modeling with R Package ctsem," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i05).
    3. Andreia Monteiro & Raquel Menezes & Maria Eduarda Silva, 2021. "Modelling informative time points: an evolutionary process approach," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 364-382, June.
    4. Thieler, Anita M. & Fried, Roland & Rathjens, Jonathan, 2016. "RobPer: An R Package to Calculate Periodograms for Light Curves Based on Robust Regression," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 69(i09).
    5. Zhang, Shibin, 2020. "Nonparametric Bayesian inference for the spectral density based on irregularly spaced data," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    2. Matteo Barigozzi & Matteo Luciani, 2019. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Papers 1910.03821, arXiv.org, revised Sep 2024.
    3. Zirogiannis, Nikolaos & Tripodis, Yorghos, 2013. "A Generalized Dynamic Factor Model for Panel Data: Estimation with a Two-Cycle Conditional Expectation-Maximization Algorithm," Working Paper Series 142752, University of Massachusetts, Amherst, Department of Resource Economics.
    4. Tobias Hartl & Roland Jucknewitz, 2022. "Approximate state space modelling of unobserved fractional components," Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
    5. S. Boragan Aruoba & Francis X. Diebold, 2010. "Real-Time Macroeconomic Monitoring: Real Activity, Inflation, and Interactions," American Economic Review, American Economic Association, vol. 100(2), pages 20-24, May.
    6. Obryan Poyser, 2017. "Exploring the determinants of Bitcoin's price: an application of Bayesian Structural Time Series," Papers 1706.01437, arXiv.org.
    7. Rob Luginbuhl, 2020. "Estimation of the Financial Cycle with a Rank-Reduced Multivariate State-Space Model," CPB Discussion Paper 409, CPB Netherlands Bureau for Economic Policy Analysis.
    8. Heimberger, Philipp & Kapeller, Jakob & Schütz, Bernhard, 2017. "The NAIRU determinants: What’s structural about unemployment in Europe?," Journal of Policy Modeling, Elsevier, vol. 39(5), pages 883-908.
    9. Philipp Heimberger & Jakob Kapeller, 2017. "The performativity of potential output: pro-cyclicality and path dependency in coordinating European fiscal policies," Review of International Political Economy, Taylor & Francis Journals, vol. 24(5), pages 904-928, September.
    10. Bernardi, Mauro & Catania, Leopoldo, 2018. "Portfolio optimisation under flexible dynamic dependence modelling," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 1-18.
    11. Krist'of N'emeth & D'aniel Hadh'azi, 2024. "Generating density nowcasts for U.S. GDP growth with deep learning: Bayes by Backprop and Monte Carlo dropout," Papers 2405.15579, arXiv.org.
    12. Mellár, Tamás & Németh, Kristóf, 2018. "A kibocsátási rés becslése többváltozós állapottérmodellekben. Szuperhiszterézis és további empirikus eredmények [Estimating output gap in multivariate state space models. Super-hysteresis and furt," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(6), pages 557-591.
    13. Davide Delle Monache & Stefano Grassi & Paolo Santucci de Magistris, 2017. "Does the ARFIMA really shift?," CREATES Research Papers 2017-16, Department of Economics and Business Economics, Aarhus University.
    14. Samuel N. Cohen & Silvia Lui & Will Malpass & Giulia Mantoan & Lars Nesheim & 'Aureo de Paula & Andrew Reeves & Craig Scott & Emma Small & Lingyi Yang, 2023. "Nowcasting with signature methods," Papers 2305.10256, arXiv.org.
    15. Guido Bulligan & Lorenzo Burlon & Davide Delle Monache & Andrea Silvestrini, 2019. "Real and financial cycles: estimates using unobserved component models for the Italian economy," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 541-569, September.
    16. Altug, Sumru & Çakmaklı, Cem, 2016. "Forecasting inflation using survey expectations and target inflation: Evidence for Brazil and Turkey," International Journal of Forecasting, Elsevier, vol. 32(1), pages 138-153.
    17. Hang Qian, 2014. "A Flexible State Space Model And Its Applications," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(2), pages 79-88, March.
    18. Yasir Riaz & Choudhry T. Shehzad & Zaghum Umar, 2021. "The sovereign yield curve and credit ratings in GIIPS," International Review of Finance, International Review of Finance Ltd., vol. 21(3), pages 895-916, September.
    19. Christian Caamaño-Carrillo & Sergio Contreras-Espinoza & Orietta Nicolis, 2023. "Reconstructing the Quarterly Series of the Chilean Gross Domestic Product Using a State Space Approach," Mathematics, MDPI, vol. 11(8), pages 1-14, April.
    20. Cartea, Álvaro & Karyampas, Dimitrios, 2011. "Volatility and covariation of financial assets: A high-frequency analysis," Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3319-3334.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:053:i05. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.