IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v057c02.html
   My bibliography  Save this article

DBKGrad: An R Package for Mortality Rates Graduation by Discrete Beta Kernel Techniques

Author

Listed:
  • Mazza, Angelo
  • Punzo, Antonio

Abstract

We introduce the R package DBKGrad, conceived to facilitate the use of kernel smoothing in graduating mortality rates. The package implements univariate and bivariate adaptive discrete beta kernel estimators. Discrete kernels have been preferred because, in this context, variables such as age, calendar year and duration, are pragmatically considered as discrete and the use of beta kernels is motivated since it reduces boundary bias. Furthermore, when data on exposures to the risk of death are available, the use of adaptive bandwidth, that may be selected by cross-validation, can provide additional benefits. To exemplify the use of the package, an application to Italian mortality rates, for different ages and calendar years, is presented.

Suggested Citation

  • Mazza, Angelo & Punzo, Antonio, 2014. "DBKGrad: An R Package for Mortality Rates Graduation by Discrete Beta Kernel Techniques," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 57(c02).
  • Handle: RePEc:jss:jstsof:v:057:c02
    DOI: http://hdl.handle.net/10.18637/jss.v057.c02
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v057c02/v57c02.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v057c02/DBKGrad_1.5.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v057c02/v57c02.R
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v057.c02?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gavin, John & Haberman, Steven & Verrall, Richard, 1993. "Moving weighted average graduation using kernel estimation," Insurance: Mathematics and Economics, Elsevier, vol. 12(2), pages 113-126, April.
    2. Luca Bagnato & Antonio Punzo, 2013. "Finite mixtures of unimodal beta and gamma densities and the $$k$$ -bumps algorithm," Computational Statistics, Springer, vol. 28(4), pages 1571-1597, August.
    3. Luca Bagnato & Antonio Punzo & Orietta Nicolis, 2012. "The autodependogram: a graphical device to investigate serial dependences," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(2), pages 233-254, March.
    4. Luca Bagnato & Lucio De Capitani & Antonio Punzo, 2014. "Detecting serial dependencies with the reproducibility probability autodependogram," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(1), pages 35-61, January.
    5. Camarda, Carlo G., 2012. "MortalitySmooth: An R Package for Smoothing Poisson Counts with P-Splines," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 50(i01).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Yue & Punzo, Antonio & Otneim, Håkon & Maruotti, Antonello, 2023. "Hidden semi-Markov models for rainfall-related insurance claims," Discussion Papers 2023/17, Norwegian School of Economics, Department of Business and Management Science.
    2. Juan Manuel Pérez-Salamero González & Marta Regúlez-Castillo & Carlos Vidal-Meliá, 2021. "Differences in Life Expectancy Between Self-Employed Workers and Paid Employees when Retirement Pensioners: Evidence from Spanish Social Security Records," European Journal of Population, Springer;European Association for Population Studies, vol. 37(3), pages 697-725, July.
    3. Mazza, Angelo & Punzo, Antonio & McGuire, Brian, 2014. "KernSmoothIRT: An R Package for Kernel Smoothing in Item Response Theory," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i06).
    4. Mahdi Salehi & Andriette Bekker & Mohammad Arashi, 2023. "A Semi-parametric Density Estimation with Application in Clustering," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 52-78, April.
    5. Punzo, Antonio & Bagnato, Luca & Maruotti, Antonello, 2018. "Compound unimodal distributions for insurance losses," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 95-107.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitris Christopoulos & Peter McAdam & Elias Tzavalis, 2023. "Exploring Okun's law asymmetry: An endogenous threshold logistic smooth transition regression approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(1), pages 123-158, February.
    2. L. Bagnato & L. De Capitani & A. Punzo, 2016. "The Kullback–Leibler autodependogram," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2574-2594, October.
    3. Luca Bagnato & Lucio De Capitani & Antonio Punzo, 2017. "A diagram to detect serial dependencies: an application to transport time series," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(2), pages 581-594, March.
    4. Bagnato, Luca & De Capitani, Lucio & Mazza, Angelo & Punzo, Antonio, 2015. "SDD: An R Package for Serial Dependence Diagrams," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(c02).
    5. Salvatore D. Tomarchio & Antonio Punzo, 2019. "Modelling the loss given default distribution via a family of zero‐and‐one inflated mixture models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1247-1266, October.
    6. Robert Stelter & David de la Croix & Mikko Myrskylä, 2020. "Leaders And Laggards In Life Expectancy Among European Scholars From The Sixteenth To The Early Twentieth Century," LIDAM Discussion Papers IRES 2020024, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    7. Ahbab Mohammad Fazle Rabbi & Stefano Mazzuco, 2021. "Mortality Forecasting with the Lee–Carter Method: Adjusting for Smoothing and Lifespan Disparity," European Journal of Population, Springer;European Association for Population Studies, vol. 37(1), pages 97-120, March.
    8. Atanu Biswas & Maria Carmen Pardo & Apratim Guha, 2014. "Auto-association measures for stationary time series of categorical data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 487-514, September.
    9. Salvatore Ingrassia & Antonio Punzo & Giorgio Vittadini & Simona Minotti, 2015. "Erratum to: The Generalized Linear Mixed Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 32(2), pages 327-355, July.
    10. Paolo Berta & Salvatore Ingrassia & Antonio Punzo & Giorgio Vittadini, 2016. "Multilevel cluster-weighted models for the evaluation of hospitals," METRON, Springer;Sapienza Università di Roma, vol. 74(3), pages 275-292, December.
    11. José M. Aburto & Alyson A. van Raalte, 2017. "Lifespan dispersion in times of life expectancy fluctuation: the case of Central and Eastern Europe," MPIDR Working Papers WP-2017-018, Max Planck Institute for Demographic Research, Rostock, Germany.
    12. Tim Riffe & Nikola Sander & Sebastian Kluesener, 2021. "Editorial to the Special Issue on Demographic Data Visualization: Getting the point across – Reaching the potential of demographic data visualization," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 44(36), pages 865-878.
    13. Jobst, Rainer & Kellner, Ralf & Rösch, Daniel, 2020. "Bayesian loss given default estimation for European sovereign bonds," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1073-1091.
    14. Juan Manuel Pérez-Salamero González & Marta Regúlez-Castillo & Carlos Vidal-Meliá, 2021. "Differences in Life Expectancy Between Self-Employed Workers and Paid Employees when Retirement Pensioners: Evidence from Spanish Social Security Records," European Journal of Population, Springer;European Association for Population Studies, vol. 37(3), pages 697-725, July.
    15. Marie-Pier Bergeron-Boucher & Vladimir Canudas-Romo & James E. Oeppen & James W. Vaupel, 2017. "Coherent forecasts of mortality with compositional data analysis," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 37(17), pages 527-566.
    16. Ugofilippo Basellini & Søren Kjærgaard & Carlo Giovanni Camarda, 2020. "An age-at-death distribution approach to forecast cohort mortality," Working Papers axafx5_3agsuwaphvlfk, French Institute for Demographic Studies.
    17. Adrien Remund & Carlo G. Camarda & Tim Riffe, 2018. "A Cause-of-Death Decomposition of Young Adult Excess Mortality," Demography, Springer;Population Association of America (PAA), vol. 55(3), pages 957-978, June.
    18. Salvatore Ingrassia & Antonio Punzo, 2020. "Cluster Validation for Mixtures of Regressions via the Total Sum of Squares Decomposition," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 526-547, July.
    19. Andrés F. Castro Torres & Ewa Batyra & Mikko Myrskylä, 2021. "Income inequality and increasing dispersion of the transition to first birth in the Global South," MPIDR Working Papers WP-2021-009, Max Planck Institute for Demographic Research, Rostock, Germany.
    20. Shi, Yue & Punzo, Antonio & Otneim, Håkon & Maruotti, Antonello, 2023. "Hidden semi-Markov models for rainfall-related insurance claims," Discussion Papers 2023/17, Norwegian School of Economics, Department of Business and Management Science.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:057:c02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.