IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i3p757-d1055342.html
   My bibliography  Save this article

Entropy-Based Tests for Complex Dependence in Economic and Financial Time Series with the R Package tseriesEntropy

Author

Listed:
  • Simone Giannerini

    (Dipartimento di Scienze Statistiche, Università di Bologna, 40126 Bologna, Italy)

  • Greta Goracci

    (Faculty of Economics and Management, Free University of Bozen-Bolzano, 39100 Bolzano, Italy)

Abstract

Testing for complex serial dependence in economic and financial time series is a crucial task that bears many practical implications. However, the linear paradigm remains pervasive among practitioners as the autocorrelation function, because, despite its known shortcomings, it is still one of the most used tools in time series analysis. We propose a solution to the problem, by introducing the R package tseriesEntropy, dedicated to testing for serial/cross dependence and nonlinear serial dependence in time series, based on the entropy metric S ρ . The package implements tests for both continuous and categorical data. The nonparametric tests, based on S ρ , rely on minimal assumptions and have also been shown to be powerful for small sample sizes. The measure can be used as a nonlinear auto/cross-dependence function, both as an exploratory tool, or as a diagnostic measure, if computed on the residuals from a fitted model. Different null hypotheses of either independence or linear dependence can be tested by means of resampling methods, backed up by a sound theoretical background. We showcase our methods on a panel of commodity price time series. The results hint at the presence of a complex dependence in the conditional mean, together with conditional heteroskedasticity, and indicate the need for an appropriate nonlinear specification.

Suggested Citation

  • Simone Giannerini & Greta Goracci, 2023. "Entropy-Based Tests for Complex Dependence in Economic and Financial Time Series with the R Package tseriesEntropy," Mathematics, MDPI, vol. 11(3), pages 1-27, February.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:757-:d:1055342
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/3/757/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/3/757/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Greta Goracci & Davide Ferrari & Simone Giannerini & Francesco ravazzolo, 2022. "Robust estimation for Threshold Autoregressive Moving-Average models," Papers 2211.08205, arXiv.org.
    2. Peter J. Bickel & Peter Bühlmann, 1997. "Closure of Linear Processes," Journal of Theoretical Probability, Springer, vol. 10(2), pages 445-479, April.
    3. Gery Geenens & Pierre Lafaye de Micheaux, 2022. "The Hellinger Correlation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(538), pages 639-653, April.
    4. Esam Mahdi & A. Ian McLeod, 2012. "Improved multivariate portmanteau test," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(2), pages 211-222, March.
    5. Bagnato, Luca & De Capitani, Lucio & Mazza, Angelo & Punzo, Antonio, 2015. "SDD: An R Package for Serial Dependence Diagrams," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(c02).
    6. Hayfield, Tristen & Racine, Jeffrey S., 2008. "Nonparametric Econometrics: The np Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i05).
    7. Simone Giannerini & Esfandiar Maasoumi & Estela Bee Dagum, 2015. "Entropy testing for nonlinear serial dependence in time series," Biometrika, Biometrika Trust, vol. 102(3), pages 661-675.
    8. C. W. Granger & E. Maasoumi & J. Racine, 2004. "A Dependence Metric for Possibly Nonlinear Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(5), pages 649-669, September.
    9. Tarn Duong & Martin L. Hazelton, 2005. "Cross‐validation Bandwidth Matrices for Multivariate Kernel Density Estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(3), pages 485-506, September.
    10. Dimitriou, Dimitrios & Kenourgios, Dimitris & Simos, Theodore, 2020. "Are there any other safe haven assets? Evidence for “exotic” and alternative assets," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 614-628.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David E. Allen & Michael McAleer & Robert Powell & Abhay K. Singh, 2013. "A Non-Parametric and Entropy Based Analysis of the Relationship between the VIX and S&P 500," JRFM, MDPI, vol. 6(1), pages 1-25, October.
    2. Antonio Fidalgo, 2018. "Testing for normality in truncated anthropometric samples," Working Papers 0142, European Historical Economics Society (EHES).
    3. Zoia, Maria Grazia & Biffi, Paola & Nicolussi, Federica, 2018. "Value at risk and expected shortfall based on Gram-Charlier-like expansions," Journal of Banking & Finance, Elsevier, vol. 93(C), pages 92-104.
    4. David E Allen & Michael McAleer & Abhay K Singh, 2017. "An entropy-based analysis of the relationship between the DOW JONES Index and the TRNA Sentiment series," Applied Economics, Taylor & Francis Journals, vol. 49(7), pages 677-692, February.
    5. L. Bagnato & L. De Capitani & A. Punzo, 2016. "The Kullback–Leibler autodependogram," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2574-2594, October.
    6. Polemis, Michael L. & Tzeremes, Nickolaos G., 2019. "Competitive conditions and sectors’ productive efficiency: A conditional non-parametric frontier analysis," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1104-1118.
    7. Renée Fry-McKibbin & Cody Yu-Ling Hsiao & Vance L. Martin, 2018. "Measuring financial interdependence in asset returns with an application to euro zone equities," CAMA Working Papers 2018-05, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    8. David H. Bernstein & Christopher F. Parmeter, 2017. "Returns to Scale in Electricity Generation: Revisited and Replicated," Working Papers 2017-08, University of Miami, Department of Economics.
    9. El Ghouch, Anouar & Genton, Marc G. & Bouezmarni , Taoufik, 2012. "Measuring the Discrepancy of a Parametric Model via Local Polynomial Smoothing," LIDAM Discussion Papers ISBA 2012001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Kemp, Gordon C.R. & Santos Silva, J.M.C., 2012. "Regression towards the mode," Journal of Econometrics, Elsevier, vol. 170(1), pages 92-101.
    11. Requillart, Vincent & Nauges, Celine & Simioni, Michel & Bontemps, Christophe, 2012. "Food Safety Regulation and Firm Productivity: Evidence from the French Food Industry," 2012 First Congress, June 4-5, 2012, Trento, Italy 124378, Italian Association of Agricultural and Applied Economics (AIEAA).
    12. Degl’Innocenti, Marta & Matousek, Roman & Sevic, Zeljko & Tzeremes, Nickolaos G., 2017. "Bank efficiency and financial centres: Does geographical location matter?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 46(C), pages 188-198.
    13. George Halkos & Roman Matousek & Nickolaos Tzeremes, 2016. "Pre-evaluating technical efficiency gains from possible mergers and acquisitions: evidence from Japanese regional banks," Review of Quantitative Finance and Accounting, Springer, vol. 46(1), pages 47-77, January.
    14. George E. Halkos & Nickolaos G. Tzeremes, 2015. "Measuring Seaports' Productivity: A Malmquist Productivity Index Decomposition Approach," Journal of Transport Economics and Policy, University of Bath, vol. 49(2), pages 355-376, April.
    15. Qi Li & Juan Lin & Jeffrey S. Racine, 2013. "Optimal Bandwidth Selection for Nonparametric Conditional Distribution and Quantile Functions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 57-65, January.
    16. Bodory, Hugo & Huber, Martin, 2018. "The causalweight package for causal inference in R," FSES Working Papers 493, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    17. Hu, Shuowen & Poskitt, D.S. & Zhang, Xibin, 2012. "Bayesian adaptive bandwidth kernel density estimation of irregular multivariate distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 732-740.
    18. Billings, Stephen B. & Johnson, Erik B., 2012. "A non-parametric test for industrial specialization," Journal of Urban Economics, Elsevier, vol. 71(3), pages 312-331.
    19. Besstremyannaya, Galina, 2015. "Measuring the effect of health insurance companies on the quality of healthcare systems with kernel and parametric regressions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 3-20.
    20. Michael S. Delgado & Daniel J. Henderson & Christopher F. Parmeter, 2014. "Does Education Matter for Economic Growth?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(3), pages 334-359, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:757-:d:1055342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.