Spatial Data Analysis with R-INLA with Some Extensions
Author
Abstract
Suggested Citation
DOI: http://hdl.handle.net/10.18637/jss.v063.i20
Download full text from publisher
References listed on IDEAS
- Michela Cameletti & Finn Lindgren & Daniel Simpson & Håvard Rue, 2013. "Spatio-temporal modeling of particulate matter concentration through the SPDE approach," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(2), pages 109-131, April.
- Ruiz-Cárdenas, Ramiro & Krainski, Elias T. & Rue, Håvard, 2012. "Direct fitting of dynamic models using integrated nested Laplace approximations — INLA," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1808-1828.
- Duncan Lee & Richard Mitchell, 2013. "Locally adaptive spatial smoothing using conditional auto-regressive models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(4), pages 593-608, August.
- Lee, Duncan, 2013. "CARBayes: An R Package for Bayesian Spatial Modeling with Conditional Autoregressive Priors," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i13).
- Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
- Eidsvik, Jo & Finley, Andrew O. & Banerjee, Sudipto & Rue, Håvard, 2012. "Approximate Bayesian inference for large spatial datasets using predictive process models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1362-1380.
- Pace, R Kelley & Gilley, Otis W, 1997. "Using the Spatial Configuration of the Data to Improve Estimation," The Journal of Real Estate Finance and Economics, Springer, vol. 14(3), pages 333-340, May.
- James P. LeSage & R. Kelley Pace & Nina Lam & Richard Campanella & Xingjian Liu, 2011. "New Orleans business recovery in the aftermath of Hurricane Katrina," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(4), pages 1007-1027, October.
- Birgit Schrödle & Leonhard Held & Andrea Riebler & Jürg Danuser, 2011. "Using integrated nested Laplace approximations for the evaluation of veterinary surveillance data from Switzerland: a case‐study," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 60(2), pages 261-279, March.
- Hossain, Md. Monir & Lawson, Andrew B., 2009. "Approximate methods in Bayesian point process spatial models," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2831-2842, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hubin, Aliaksandr & Storvik, Geir, 2018. "Mode jumping MCMC for Bayesian variable selection in GLMM," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 281-297.
- Clinton Woods & Han Yu & Hong Huang, 2020. "Predicting the success of entrepreneurial campaigns in crowdfunding: a spatio-temporal approach," Journal of Innovation and Entrepreneurship, Springer, vol. 9(1), pages 1-23, December.
- Nikolas Kuschnig, 2022. "Bayesian spatial econometrics: a software architecture," Journal of Spatial Econometrics, Springer, vol. 3(1), pages 1-25, December.
- Fernando Santa & Roberto Henriques & Joaquín Torres-Sospedra & Edzer Pebesma, 2019. "A Statistical Approach for Studying the Spatio-Temporal Distribution of Geolocated Tweets in Urban Environments," Sustainability, MDPI, vol. 11(3), pages 1-29, January.
- Zongyuan Xia & Bo Tang & Long Qin & Huiguo Zhang & Xijian Hu, 2023. "Spatially Dependent Bayesian Modeling of Geostatistics Data and Its Application for Tuberculosis (TB) in China," Mathematics, MDPI, vol. 11(19), pages 1-15, October.
- Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
- Daniela Castro-Camilo & Raphaël Huser & Håvard Rue, 2019. "A Spliced Gamma-Generalized Pareto Model for Short-Term Extreme Wind Speed Probabilistic Forecasting," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 517-534, September.
- Thomas Suesse, 2018. "Estimation of spatial autoregressive models with measurement error for large data sets," Computational Statistics, Springer, vol. 33(4), pages 1627-1648, December.
- Silius M. Vandeskog & Sara Martino & Daniela Castro-Camilo & Håvard Rue, 2022. "Modelling Sub-daily Precipitation Extremes with the Blended Generalised Extreme Value Distribution," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 598-621, December.
- I Gede Nyoman Mindra Jaya & Farah Kristiani & Yudhie Andriyana & Anna Chadidjah, 2024. "Sensitivity Analysis on Hyperprior Distribution of the Variance Components of Hierarchical Bayesian Spatiotemporal Disease Mapping," Mathematics, MDPI, vol. 12(3), pages 1-16, January.
- Han, Jeongseop & Lee, Youngjo, 2024. "Enhanced Laplace approximation," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
- Sheyla Rodrigues Cassy & Samuel Manda & Filipe Marques & Maria do Rosário Oliveira Martins, 2022. "Accounting for Sampling Weights in the Analysis of Spatial Distributions of Disease Using Health Survey Data, with an Application to Mapping Child Health in Malawi and Mozambique," IJERPH, MDPI, vol. 19(10), pages 1-15, May.
- I. Gede Nyoman Mindra Jaya & Henk Folmer, 2020. "Bayesian spatiotemporal mapping of relative dengue disease risk in Bandung, Indonesia," Journal of Geographical Systems, Springer, vol. 22(1), pages 105-142, January.
- Sebastian Klüsener & Martin Dribe & Francesco Scalone, 2019. "Spatial and Social Distance at the Onset of the Fertility Transition: Sweden, 1880–1900," Demography, Springer;Population Association of America (PAA), vol. 56(1), pages 169-199, February.
- I. Gede Nyoman Mindra Jaya & Henk Folmer, 2022. "Spatiotemporal high-resolution prediction and mapping: methodology and application to dengue disease," Journal of Geographical Systems, Springer, vol. 24(4), pages 527-581, October.
- Virgilio Gómez-Rubio & Roger S. Bivand & Håvard Rue, 2021. "Estimating Spatial Econometrics Models with Integrated Nested Laplace Approximation," Mathematics, MDPI, vol. 9(17), pages 1-23, August.
- Anjana Wijayawardhana & David Gunawan & Thomas Suesse, 2024. "A Marginal Maximum Likelihood Approach for Hierarchical Simultaneous Autoregressive Models with Missing Data," Mathematics, MDPI, vol. 12(23), pages 1-16, December.
- Chien-Chou Chen & Guo-Jun Lo & Ta-Chien Chan, 2022. "Spatial Analysis on Supply and Demand of Adult Surgical Masks in Taipei Metropolitan Areas in the Early Phase of the COVID-19 Pandemic," IJERPH, MDPI, vol. 19(11), pages 1-12, May.
- Brian Witrick & Corey A. Kalbaugh & Lu Shi & Rachel Mayo & Brian Hendricks, 2021. "Geographic Disparities in Readmissions for Peripheral Artery Disease in South Carolina," IJERPH, MDPI, vol. 19(1), pages 1-11, December.
- I. Gede Nyoman Mindra Jaya & Budhi Handoko & Yudhie Andriyana & Anna Chadidjah & Farah Kristiani & Mila Antikasari, 2023. "Multivariate Bayesian Semiparametric Regression Model for Forecasting and Mapping HIV and TB Risks in West Java, Indonesia," Mathematics, MDPI, vol. 11(17), pages 1-23, August.
- Darren J. Mayne & Geoffrey G. Morgan & Bin B. Jalaludin & Adrian E. Bauman, 2018. "Does Walkability Contribute to Geographic Variation in Psychosocial Distress? A Spatial Analysis of 91,142 Members of the 45 and Up Study in Sydney, Australia," IJERPH, MDPI, vol. 15(2), pages 1-24, February.
- Pebesma, Edzer & Bivand, Roger & Ribeiro, Paulo Justiniano, 2015. "Software for Spatial Statistics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i01).
- Tamás Krisztin & Philipp Piribauer & Michael Wögerer, 2020. "The spatial econometrics of the coronavirus pandemic," Letters in Spatial and Resource Sciences, Springer, vol. 13(3), pages 209-218, December.
- Na Zhao & Mingxing Chen, 2021. "A Comprehensive Study of Spatiotemporal Variations in Temperature Extremes across China during 1960–2018," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
- Paula Simões & Sérgio Gomes & Isabel Natário, 2021. "Hospital Emergency Room Savings via Health Line S24 in Portugal," Econometrics, MDPI, vol. 9(1), pages 1-10, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Virgilio Gómez-Rubio & Roger S. Bivand & Håvard Rue, 2021. "Estimating Spatial Econometrics Models with Integrated Nested Laplace Approximation," Mathematics, MDPI, vol. 9(17), pages 1-23, August.
- Nikoline N. Knudsen & Jörg Schullehner & Birgitte Hansen & Lisbeth F. Jørgensen & Søren M. Kristiansen & Denitza D. Voutchkova & Thomas A. Gerds & Per K. Andersen & Kristine Bihrmann & Morten Grønbæk , 2017. "Lithium in Drinking Water and Incidence of Suicide: A Nationwide Individual-Level Cohort Study with 22 Years of Follow-Up," IJERPH, MDPI, vol. 14(6), pages 1-13, June.
- Leonardo Padilla & Bernado Lagos‐Álvarez & Jorge Mateu & Emilio Porcu, 2020. "Space‐time autoregressive estimation and prediction with missing data based on Kalman filtering," Environmetrics, John Wiley & Sons, Ltd., vol. 31(7), November.
- Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
- Braulio-Gonzalo, Marta & Bovea, María D. & Jorge-Ortiz, Andrea & Juan, Pablo, 2021. "Which is the best-fit response variable for modelling the energy consumption of households? An analysis based on survey data," Energy, Elsevier, vol. 231(C).
- I Gede Nyoman Mindra Jaya & Henk Folmer, 2024. "High-Resolution Spatiotemporal Forecasting with Missing Observations Including an Application to Daily Particulate Matter 2.5 Concentrations in Jakarta Province, Indonesia," Mathematics, MDPI, vol. 12(18), pages 1-29, September.
- Chan, Joshua C.C., 2013.
"Moving average stochastic volatility models with application to inflation forecast,"
Journal of Econometrics, Elsevier, vol. 176(2), pages 162-172.
- Joshua C C Chan, 2012. "Moving Average Stochastic Volatility Models with Application to Inflation Forecast," ANU Working Papers in Economics and Econometrics 2012-591, Australian National University, College of Business and Economics, School of Economics.
- Joshua C.C. Chan, 2013. "Moving Average Stochastic Volatility Models with Application to Inflation Forecast," CAMA Working Papers 2013-31, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Athanasios C. Micheas & Jiaxun Chen, 2018. "sppmix: Poisson point process modeling using normal mixture models," Computational Statistics, Springer, vol. 33(4), pages 1767-1798, December.
- Jacqueline D. Seufert & Andre Python & Christoph Weisser & Elías Cisneros & Krisztina Kis‐Katos & Thomas Kneib, 2022. "Mapping ex ante risks of COVID‐19 in Indonesia using a Bayesian geostatistical model on airport network data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2121-2155, October.
- Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
- Zammit-Mangion, Andrew & Rougier, Jonathan, 2018. "A sparse linear algebra algorithm for fast computation of prediction variances with Gaussian Markov random fields," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 116-130.
- Márcio Poletti Laurini, 2017. "A spatial error model with continuous random effects and an application to growth convergence," Journal of Geographical Systems, Springer, vol. 19(4), pages 371-398, October.
- Somnath Chaudhuri & Gerard Giménez-Adsuar & Marc Saez & Maria A. Barceló, 2022. "PandemonCAT: Monitoring the COVID-19 Pandemic in Catalonia, Spain," IJERPH, MDPI, vol. 19(8), pages 1-22, April.
- Gressani, Oswaldo & Lambert, Philippe, 2016. "Fast Bayesian inference in semi-parametric P-spline cure survival models using Laplace approximations," LIDAM Discussion Papers ISBA 2016041, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Ferreira, Marco A.R. & Porter, Erica M. & Franck, Christopher T., 2021. "Fast and scalable computations for Gaussian hierarchical models with intrinsic conditional autoregressive spatial random effects," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
- Luis A. Barboza & Julien Emile-Geay & Bo Li & Wan He, 2019. "Efficient Reconstructions of Common Era Climate via Integrated Nested Laplace Approximations," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 535-554, September.
- Gerber, Florian & Furrer, Reinhard, 2015. "Pitfalls in the Implementation of Bayesian Hierarchical Modeling of Areal Count Data: An Illustration Using BYM and Leroux Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(c01).
- Gressani, Oswaldo & Lambert, Philippe, 2018. "Fast Bayesian inference using Laplace approximations in a flexible promotion time cure model based on P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 151-167.
- Yuheng Ling, 2020. "Time, space and hedonic prediction accuracy: evidence from Corsican apartment markets," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 64(2), pages 367-388, April.
- Chiranjit Dutta & Nalini Ravishanker & Sumanta Basu, 2022. "Modeling Multivariate Positive-Valued Time Series Using R-INLA," Papers 2206.05374, arXiv.org, revised Jul 2022.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:063:i20. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.