IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v9y2021i1p8-d503054.html
   My bibliography  Save this article

Hospital Emergency Room Savings via Health Line S24 in Portugal

Author

Listed:
  • Paula Simões

    (Centro de Matemática e Aplicações (CMA), Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
    Centro de Investigação, Desenvolvimento e Inovação da Academia Militar (CINAMIL), 1169-203 Lisboa, Portugal
    These authors contributed equally to this work.)

  • Sérgio Gomes

    (Direção Geral de Saúde, 1049-005 Lisboa, Portugal)

  • Isabel Natário

    (Centro de Matemática e Aplicações (CMA), Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
    Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
    These authors contributed equally to this work.)

Abstract

Hospital emergency departments are often overused by patients that do not really need urgent care. These admissions are one of the major factors contributing to hospital costs, which should not be allowed to compromise the response and effectiveness of the National Health Services (SNS). The aim of this study is to perform a detailed spatial health econometrics analysis of the non-urgent emergency situations (classified by Manchester triage) by area, linking them with the efficient use of the national health line, the Saude24 line (S24 line). This is evaluated through the S24 savings calls, using a savings index and its spatial effectiveness in solving the non-urgent emergency situations. A savings call is a call by a user whose initial intention was to go to an urgency department, but who. after calling the S24 line. changed his/her mind. Given the spatial nature of the data, and resorting to INLA in a Bayesian paradigm, the number of non-urgent cases in the Portuguese urgency hospital departments is modeled in an autoregressive way. The spatial structure is accounted for by a set of random effects. The model additionally includes regular covariates and a spatially lagged covariate savings index, related with the S24 savings calls. Therefore, the response in a given area depends not only on the (weighted) values of the response in its neighborhood and of the considered covariates, but also on the (weighted) values of the covariate savings index measured in each neighbor, by means of a Bayesian Poisson spatial Durbin model.

Suggested Citation

  • Paula Simões & Sérgio Gomes & Isabel Natário, 2021. "Hospital Emergency Room Savings via Health Line S24 in Portugal," Econometrics, MDPI, vol. 9(1), pages 1-10, February.
  • Handle: RePEc:gam:jecnmx:v:9:y:2021:i:1:p:8-:d:503054
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/9/1/8/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/9/1/8/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    2. Bivand, Roger & Gómez-Rubio, Virgilio & Rue, Håvard, 2015. "Spatial Data Analysis with R-INLA with Some Extensions," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i20).
    3. Hughes, David & McGuire, Alistair, 2003. "Stochastic demand, production responses and hospital costs," Journal of Health Economics, Elsevier, vol. 22(6), pages 999-1010, November.
    4. Paula Simões & M. Lucília Carvalho & Sandra Aleixo & Sérgio Gomes & Isabel Natário, 2017. "A Spatial Econometric Analysis of the Calls to the Portuguese National Health Line," Econometrics, MDPI, vol. 5(2), pages 1-23, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniela Castro-Camilo & Raphaël Huser & Håvard Rue, 2019. "A Spliced Gamma-Generalized Pareto Model for Short-Term Extreme Wind Speed Probabilistic Forecasting," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 517-534, September.
    2. Han, Jeongseop & Lee, Youngjo, 2024. "Enhanced Laplace approximation," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    3. Darren J. Mayne & Geoffrey G. Morgan & Bin B. Jalaludin & Adrian E. Bauman, 2018. "Does Walkability Contribute to Geographic Variation in Psychosocial Distress? A Spatial Analysis of 91,142 Members of the 45 and Up Study in Sydney, Australia," IJERPH, MDPI, vol. 15(2), pages 1-24, February.
    4. Clinton Woods & Han Yu & Hong Huang, 2020. "Predicting the success of entrepreneurial campaigns in crowdfunding: a spatio-temporal approach," Journal of Innovation and Entrepreneurship, Springer, vol. 9(1), pages 1-23, December.
    5. Paula Simões & M. Lucília Carvalho & Sandra Aleixo & Sérgio Gomes & Isabel Natário, 2017. "A Spatial Econometric Analysis of the Calls to the Portuguese National Health Line," Econometrics, MDPI, vol. 5(2), pages 1-23, June.
    6. Silius M. Vandeskog & Sara Martino & Daniela Castro-Camilo & Håvard Rue, 2022. "Modelling Sub-daily Precipitation Extremes with the Blended Generalised Extreme Value Distribution," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 598-621, December.
    7. I. Gede Nyoman Mindra Jaya & Henk Folmer, 2020. "Bayesian spatiotemporal mapping of relative dengue disease risk in Bandung, Indonesia," Journal of Geographical Systems, Springer, vol. 22(1), pages 105-142, January.
    8. I. Gede Nyoman Mindra Jaya & Budhi Handoko & Yudhie Andriyana & Anna Chadidjah & Farah Kristiani & Mila Antikasari, 2023. "Multivariate Bayesian Semiparametric Regression Model for Forecasting and Mapping HIV and TB Risks in West Java, Indonesia," Mathematics, MDPI, vol. 11(17), pages 1-23, August.
    9. Na Zhao & Mingxing Chen, 2021. "A Comprehensive Study of Spatiotemporal Variations in Temperature Extremes across China during 1960–2018," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    10. Chien-Chou Chen & Guo-Jun Lo & Ta-Chien Chan, 2022. "Spatial Analysis on Supply and Demand of Adult Surgical Masks in Taipei Metropolitan Areas in the Early Phase of the COVID-19 Pandemic," IJERPH, MDPI, vol. 19(11), pages 1-12, May.
    11. Fernando Santa & Roberto Henriques & Joaquín Torres-Sospedra & Edzer Pebesma, 2019. "A Statistical Approach for Studying the Spatio-Temporal Distribution of Geolocated Tweets in Urban Environments," Sustainability, MDPI, vol. 11(3), pages 1-29, January.
    12. Thomas Suesse, 2018. "Estimation of spatial autoregressive models with measurement error for large data sets," Computational Statistics, Springer, vol. 33(4), pages 1627-1648, December.
    13. Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    14. I Gede Nyoman Mindra Jaya & Farah Kristiani & Yudhie Andriyana & Anna Chadidjah, 2024. "Sensitivity Analysis on Hyperprior Distribution of the Variance Components of Hierarchical Bayesian Spatiotemporal Disease Mapping," Mathematics, MDPI, vol. 12(3), pages 1-16, January.
    15. Sheyla Rodrigues Cassy & Samuel Manda & Filipe Marques & Maria do Rosário Oliveira Martins, 2022. "Accounting for Sampling Weights in the Analysis of Spatial Distributions of Disease Using Health Survey Data, with an Application to Mapping Child Health in Malawi and Mozambique," IJERPH, MDPI, vol. 19(10), pages 1-15, May.
    16. I. Gede Nyoman Mindra Jaya & Henk Folmer, 2022. "Spatiotemporal high-resolution prediction and mapping: methodology and application to dengue disease," Journal of Geographical Systems, Springer, vol. 24(4), pages 527-581, October.
    17. Virgilio Gómez-Rubio & Roger S. Bivand & Håvard Rue, 2021. "Estimating Spatial Econometrics Models with Integrated Nested Laplace Approximation," Mathematics, MDPI, vol. 9(17), pages 1-23, August.
    18. Hubin, Aliaksandr & Storvik, Geir, 2018. "Mode jumping MCMC for Bayesian variable selection in GLMM," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 281-297.
    19. Brian Witrick & Corey A. Kalbaugh & Lu Shi & Rachel Mayo & Brian Hendricks, 2021. "Geographic Disparities in Readmissions for Peripheral Artery Disease in South Carolina," IJERPH, MDPI, vol. 19(1), pages 1-11, December.
    20. Anjana Wijayawardhana & David Gunawan & Thomas Suesse, 2024. "A Marginal Maximum Likelihood Approach for Hierarchical Simultaneous Autoregressive Models with Missing Data," Mathematics, MDPI, vol. 12(23), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:9:y:2021:i:1:p:8-:d:503054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.