IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v041i01.html
   My bibliography  Save this article

Statistical Software for State Space Methods

Author

Listed:
  • Commandeur, Jacques J. F.
  • Koopman, Siem Jan
  • Ooms, Marius

Abstract

In this paper we review the state space approach to time series analysis and establish the notation that is adopted in this special volume of the Journal of Statistical Software. We first provide some background on the history of state space methods for the analysis of time series. This is followed by a concise overview of linear Gaussian state space analysis including the modelling framework and appropriate estimation methods. We discuss the important class of unobserved component models which incorporate a trend, a seasonal, a cycle, and fixed explanatory and intervention variables for the univariate and multivariate analysis of time series. We continue the discussion by presenting methods for the computation of different estimates for the unobserved state vector: filtering, prediction, and smoothing. Estimation approaches for the other parameters in the model are also considered. Next, we discuss how the estimation procedures can be used for constructing confidence intervals, detecting outlier observations and structural breaks, and testing model assumptions of residual independence, homoscedasticity, and normality. We then show how ARIMA and ARIMA components models fit in the state space framework to time series analysis. We also provide a basic introduction for non-Gaussian state space models. Finally, we present an overview of the software tools currently available for the analysis of time series with state space methods as they are discussed in the other contributions to this special volume.

Suggested Citation

  • Commandeur, Jacques J. F. & Koopman, Siem Jan & Ooms, Marius, 2011. "Statistical Software for State Space Methods," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 41(i01).
  • Handle: RePEc:jss:jstsof:v:041:i01
    DOI: http://hdl.handle.net/10.18637/jss.v041.i01
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v041i01/v41i01.pdf
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v041.i01?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. [Reference to Proietti], Tommaso, 2000. "Comparing seasonal components for structural time series models," International Journal of Forecasting, Elsevier, vol. 16(2), pages 247-260.
    2. Commandeur, Jacques J.F. & Koopman, Siem Jan, 2007. "An Introduction to State Space Time Series Analysis," OUP Catalogue, Oxford University Press, number 9780199228874.
    3. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    4. Lucchetti, Riccardo, 2011. "State Space Methods in gretl," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 41(i11).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siem Jan Koopman & Kai Ming Lee, 2009. "Seasonality with trend and cycle interactions in unobserved components models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(4), pages 427-448, September.
    2. repec:jss:jstsof:41:i01 is not listed on IDEAS
    3. Alexander Tsyplakov, 2011. "An introduction to state space modeling (in Russian)," Quantile, Quantile, issue 9, pages 1-24, July.
    4. Tommaso Proietti, 2012. "Seasonality, Forecast Extensions And Business Cycle Uncertainty," Journal of Economic Surveys, Wiley Blackwell, vol. 26(4), pages 555-569, September.
    5. Chang, Yu Sang, 2014. "Comparative analysis of long-term road fatality targets for individual states in the US—An application of experience curve models," Transport Policy, Elsevier, vol. 36(C), pages 53-69.
    6. Ferrara, L. & Koopman, S J., 2010. "Common business and housing market cycles in the Euro area from a multivariate decomposition," Working papers 275, Banque de France.
    7. Paul Labonne & Martin Weale, 2018. "Temporal disaggregation of overlapping noisy quarterly data using state space models: Estimation of monthly business sector output from Value Added Tax data in the UK," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2018-18, Economic Statistics Centre of Excellence (ESCoE).
    8. Giovanni Angelini & Giuseppe Cavaliere & Luca Fanelli, 2022. "Bootstrap inference and diagnostics in state space models: With applications to dynamic macro models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 3-22, January.
    9. Lucas P. Harlaar & Jacques J.F. Commandeur & Jan A. van den Brakel & Siem Jan Koopman & Niels Bos & Frits D. Bijleveld, 2024. "Statistical Early Warning Models with Applications," Tinbergen Institute Discussion Papers 24-037/III, Tinbergen Institute.
    10. Caporale, Guglielmo Maria & Çatık, Abdurrahman Nazif & Huyuguzel Kısla, Gul Serife & Helmi, Mohamad Husam & Akdeniz, Coşkun, 2022. "Oil prices and sectoral stock returns in the BRICS-T countries: A time-varying approach," Resources Policy, Elsevier, vol. 79(C).
    11. Petros Pechlivanoglou & Jaap E. Wieringa & Tim de Jager & Maarten J. Postma, 2015. "The Effect of Financial and Educational Incentives on Rational Prescribing. A State‐Space Approach," Health Economics, John Wiley & Sons, Ltd., vol. 24(4), pages 439-453, April.
    12. Tommaso Proietti & Marco Riani, 2009. "Transformations and seasonal adjustment," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 47-69, January.
    13. Zietz, Joachim & Traian, Anca, 2014. "When was the U.S. housing downturn predictable? A comparison of univariate forecasting methods," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 271-281.
    14. Dilaver, Zafer & Hunt, Lester C., 2011. "Industrial electricity demand for Turkey: A structural time series analysis," Energy Economics, Elsevier, vol. 33(3), pages 426-436, May.
    15. Irma Hindrayanto & John A.D. Aston & Siem Jan Koopman & Marius Ooms, 2013. "Modelling trigonometric seasonal components for monthly economic time series," Applied Economics, Taylor & Francis Journals, vol. 45(21), pages 3024-3034, July.
    16. Moonam, Hasan M. & Qin, Xiao & Zhang, Jun, 2019. "Utilizing data mining techniques to predict expected freeway travel time from experienced travel time," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 154-167.
    17. Cesar R. Van Der Laan & Marcos Tadeu C. Lélis & André Moreira Cunha, 2016. "External Capital Flows’ Management In The Great Recession: The Brazilian Experience (2007-2013)," Anais do XLII Encontro Nacional de Economia [Proceedings of the 42nd Brazilian Economics Meeting] 035, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    18. Orair, Rodrigo Octávio & Silva, Wesley de Jesus, 2013. "Subnational Government Investment in Brazil: Estimation and Analysis by State Space Models," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 33(1), September.
    19. Martin Weale & Paul Labonne, 2022. "Nowcasting in the presence of large measurement errors and revisions," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2022-05, Economic Statistics Centre of Excellence (ESCoE).
    20. Neil Dias Karunaratne, 2013. "The mining boom, productivity conundrum and monetary policy design to combat resource curse effects in Australia," Discussion Papers Series 504, School of Economics, University of Queensland, Australia.
    21. Pennings, Clint L.P. & van Dalen, Jan, 2017. "Integrated hierarchical forecasting," European Journal of Operational Research, Elsevier, vol. 263(2), pages 412-418.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:041:i01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.