IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v041i01.html
   My bibliography  Save this article

Statistical Software for State Space Methods

Author

Listed:
  • Commandeur, Jacques J. F.
  • Koopman, Siem Jan
  • Ooms, Marius

Abstract

In this paper we review the state space approach to time series analysis and establish the notation that is adopted in this special volume of the Journal of Statistical Software. We first provide some background on the history of state space methods for the analysis of time series. This is followed by a concise overview of linear Gaussian state space analysis including the modelling framework and appropriate estimation methods. We discuss the important class of unobserved component models which incorporate a trend, a seasonal, a cycle, and fixed explanatory and intervention variables for the univariate and multivariate analysis of time series. We continue the discussion by presenting methods for the computation of different estimates for the unobserved state vector: filtering, prediction, and smoothing. Estimation approaches for the other parameters in the model are also considered. Next, we discuss how the estimation procedures can be used for constructing confidence intervals, detecting outlier observations and structural breaks, and testing model assumptions of residual independence, homoscedasticity, and normality. We then show how ARIMA and ARIMA components models fit in the state space framework to time series analysis. We also provide a basic introduction for non-Gaussian state space models. Finally, we present an overview of the software tools currently available for the analysis of time series with state space methods as they are discussed in the other contributions to this special volume.

Suggested Citation

  • Commandeur, Jacques J. F. & Koopman, Siem Jan & Ooms, Marius, 2011. "Statistical Software for State Space Methods," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 41(i01).
  • Handle: RePEc:jss:jstsof:v:041:i01
    DOI: http://hdl.handle.net/10.18637/jss.v041.i01
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v041i01/v41i01.pdf
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v041.i01?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lucchetti, Riccardo, 2011. "State Space Methods in gretl," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 41(i11).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander Dokumentov & Rob J. Hyndman, 2015. "STR: A Seasonal-Trend Decomposition Procedure Based on Regression," Monash Econometrics and Business Statistics Working Papers 13/15, Monash University, Department of Econometrics and Business Statistics.
    2. Zietz, Joachim & Traian, Anca, 2014. "When was the U.S. housing downturn predictable? A comparison of univariate forecasting methods," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 271-281.
    3. repec:jss:jstsof:41:i02 is not listed on IDEAS
    4. repec:jss:jstsof:41:i07 is not listed on IDEAS
    5. repec:jss:jstsof:41:i12 is not listed on IDEAS
    6. Gómez, Victor, 2015. "SSMMATLAB: A Set of MATLAB Programs for the Statistical Analysis of State Space Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 66(i09).
    7. Gabriele Fiorentini & Enrique Sentana, 2016. "Neglected serial correlation tests in UCARIMA models," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(1), pages 121-178, March.
    8. Alexander Dokumentov & Rob J. Hyndman, 2022. "STR: Seasonal-Trend Decomposition Using Regression," INFORMS Joural on Data Science, INFORMS, vol. 1(1), pages 50-62, April.
    9. Qian, Hang, 2015. "Inequality Constrained State Space Models," MPRA Paper 66447, University Library of Munich, Germany.
    10. repec:jss:jstsof:41:i11 is not listed on IDEAS
    11. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    12. repec:jss:jstsof:41:i04 is not listed on IDEAS
    13. Jong-Min Kim & Bainwen Sun & Sunghae Jun, 2019. "Sustainable Technology Analysis Using Data Envelopment Analysis and State Space Models," Sustainability, MDPI, vol. 11(13), pages 1-19, June.
    14. repec:jss:jstsof:41:i13 is not listed on IDEAS
    15. Tölö, Eero & Jokivuolle, Esa & Virén, Matti, 2017. "Do banks’ overnight borrowing rates lead their CDS price? Evidence from the Eurosystem," Journal of Financial Intermediation, Elsevier, vol. 31(C), pages 93-106.
    16. Christoph F. Kurz & Martin Rehm & Rolf Holle & Christina Teuner & Michael Laxy & Larissa Schwarzkopf, 2019. "The effect of bariatric surgery on health care costs: A synthetic control approach using Bayesian structural time series," Health Economics, John Wiley & Sons, Ltd., vol. 28(11), pages 1293-1307, November.
    17. Weigand Roland & Wanger Susanne & Zapf Ines, 2018. "Factor Structural Time Series Models for Official Statistics with an Application to Hours Worked in Germany," Journal of Official Statistics, Sciendo, vol. 34(1), pages 265-301, March.
    18. repec:jss:jstsof:41:i06 is not listed on IDEAS
    19. Jacques Peeperkorn & Yudhvir Seetharam, 2016. "A learning-augmented approach to pricing risk in South Africa," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 6(1), pages 117-139, April.
    20. Riccardo “Jack” Lucchetti & Francesco Valentini, 2024. "Linear models with time-varying parameters: a comparison of different approaches," Computational Statistics, Springer, vol. 39(7), pages 3523-3545, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Błażejowski, Marcin & Kwiatkowski, Jacek, 2015. "Bayesian Model Averaging and Jointness Measures for gretl," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 68(i05).
    2. Chirico, Paolo, 2014. "Modelli strutturali e Filtri di Kalman per serie storiche univariate. Teoria ed applicazioni con Gretl," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201401, University of Turin.
    3. Marcin Błażejowski, 2024. "Which C compiler and BLAS/LAPACK library should I use: gretl’s numerical efficiency in different configurations," Computational Statistics, Springer, vol. 39(7), pages 3497-3522, December.
    4. Yalta, A. Talha & Schreiber, Sven, 2012. "Random Number Generation in gretl," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 50(c01).
    5. Gómez, Victor, 2015. "SSMMATLAB: A Set of MATLAB Programs for the Statistical Analysis of State Space Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 66(i09).
    6. Allin Cottrell & Riccardo (Jack) Lucchetti & Matteo Pelagatti, 2016. "Measures of variance for smoothed disturbances in linear state-space models: a clarification," gretl working papers 3, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    7. Riccardo “Jack” Lucchetti & Francesco Valentini, 2024. "Linear models with time-varying parameters: a comparison of different approaches," Computational Statistics, Springer, vol. 39(7), pages 3523-3545, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:041:i01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.