IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i13p3597-d244316.html
   My bibliography  Save this article

Sustainable Technology Analysis Using Data Envelopment Analysis and State Space Models

Author

Listed:
  • Jong-Min Kim

    (Statistics Discipline, Division of Sciences and Mathematics, University of Minnesota-Morris, Morris, MN 56267, USA)

  • Bainwen Sun

    (Statistics Discipline, Division of Sciences and Mathematics, University of Minnesota-Morris, Morris, MN 56267, USA)

  • Sunghae Jun

    (Department of Big Data and Statistics, Cheongju University, Chungbuk 28503, Korea)

Abstract

To find sustainable technology in various areas, we propose an analytical methodology based on data envelopment analysis (DEA) and the state space model (SSM). DEA is an analytical method used to compare the efficiencies and performances of several items. In DEA, for sustainable technology analysis, the items of DEA can be the technological keywords or international patent classification (IPC) codes in patent documents. In this paper, the proposed method is used to find the relative performance of different patent keywords using comparison and evaluation. We apply this methodology to compare the technological efficiencies between patent keywords for sustainable technology analysis. We apply the additive model and directional distance function of DEA to develop the proposed methodology for building the technological structure of target technology. In addition, we forecast the future trend of target technology using the SSM and find the area of sustainable technology by its result. The SSM is well suited for time series forecasting on technology analysis. We extract the IPC codes from patent documents for the SSM. In our research, we combine the results of DEA and the SSM to find the area of technological sustainability. To illustrate the validity and performance of our research, we conduct a case study using the patent documents used and registered by Apple.

Suggested Citation

  • Jong-Min Kim & Bainwen Sun & Sunghae Jun, 2019. "Sustainable Technology Analysis Using Data Envelopment Analysis and State Space Models," Sustainability, MDPI, vol. 11(13), pages 1-19, June.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:13:p:3597-:d:244316
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/13/3597/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/13/3597/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Petris, Giovanni & Petrone, Sonia, 2011. "State Space Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 41(i04).
    2. Junseok Lee & Ji-Ho Kang & Sunghae Jun & Hyunwoong Lim & Dongsik Jang & Sangsung Park, 2018. "Ensemble Modeling for Sustainable Technology Transfer," Sustainability, MDPI, vol. 10(7), pages 1-15, July.
    3. Finn Førsund & Nikias Sarafoglou, 2002. "On the Origins of Data Envelopment Analysis," Journal of Productivity Analysis, Springer, vol. 17(1), pages 23-40, January.
    4. Commandeur, Jacques J. F. & Koopman, Siem Jan & Ooms, Marius, 2011. "Statistical Software for State Space Methods," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 41(i01).
    5. Sangsung Park & Seung-Joo Lee & Sunghae Jun, 2015. "A Network Analysis Model for Selecting Sustainable Technology," Sustainability, MDPI, vol. 7(10), pages 1-16, September.
    6. Junhyeog Choi & Sunghae Jun & Sangsung Park, 2016. "A Patent Analysis for Sustainable Technology Management," Sustainability, MDPI, vol. 8(7), pages 1-13, July.
    7. Fried, Harold O. & Lovell, C. A. Knox & Schmidt, Shelton S. (ed.), 2008. "The Measurement of Productive Efficiency and Productivity Growth," OUP Catalogue, Oxford University Press, number 9780195183528.
    8. Sunghae Jun, 2018. "Bayesian Count Data Modeling for Finding Technological Sustainability," Sustainability, MDPI, vol. 10(9), pages 1-12, September.
    9. Daiho Uhm & Jea-Bok Ryu & Sunghae Jun, 2017. "An Interval Estimation Method of Patent Keyword Data for Sustainable Technology Forecasting," Sustainability, MDPI, vol. 9(11), pages 1-19, November.
    10. Banker, Rajiv D. & Cooper, William W. & Seiford, Lawrence M. & Thrall, Robert M. & Zhu, Joe, 2004. "Returns to scale in different DEA models," European Journal of Operational Research, Elsevier, vol. 154(2), pages 345-362, April.
    11. Juhwan Kim & Sunghae Jun & Dongsik Jang & Sangsung Park, 2018. "Sustainable Technology Analysis of Artificial Intelligence Using Bayesian and Social Network Models," Sustainability, MDPI, vol. 10(1), pages 1-12, January.
    12. Charnes, A. & Cooper, W. W. & Golany, B. & Seiford, L. & Stutz, J., 1985. "Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 91-107.
    13. BangRae Lee & DongKyu Won & Jun-Hwan Park & LeeNam Kwon & Young-Ho Moon & Han-Joon Kim, 2016. "Patent-Enhancing Strategies by Industry in Korea Using a Data Envelopment Analysis," Sustainability, MDPI, vol. 8(9), pages 1-17, September.
    14. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    15. Sungchul Kim & Dongsik Jang & Sunghae Jun & Sangsung Park, 2015. "A Novel Forecasting Methodology for Sustainable Management of Defense Technology," Sustainability, MDPI, vol. 7(12), pages 1-17, December.
    16. Sangsung Park & Sunghae Jun, 2017. "Statistical Technology Analysis for Competitive Sustainability of Three Dimensional Printing," Sustainability, MDPI, vol. 9(7), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sangsung Park & Sunghae Jun, 2020. "Patent Keyword Analysis of Disaster Artificial Intelligence Using Bayesian Network Modeling and Factor Analysis," Sustainability, MDPI, vol. 12(2), pages 1-11, January.
    2. Sangsung Park & Seongyong Choi & Sunghae Jun, 2021. "Bayesian Structure Learning and Visualization for Technology Analysis," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    3. Sangsung Park & Sunghae Jun, 2020. "Sustainable Technology Analysis of Blockchain Using Generalized Additive Modeling," Sustainability, MDPI, vol. 12(24), pages 1-15, December.
    4. Sunghae Jun, 2019. "Bayesian Structural Time Series and Regression Modeling for Sustainable Technology Management," Sustainability, MDPI, vol. 11(18), pages 1-12, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sunghae Jun, 2019. "Bayesian Structural Time Series and Regression Modeling for Sustainable Technology Management," Sustainability, MDPI, vol. 11(18), pages 1-12, September.
    2. Sunghae Jun, 2018. "Bayesian Count Data Modeling for Finding Technological Sustainability," Sustainability, MDPI, vol. 10(9), pages 1-12, September.
    3. Forsund, Finn R. & Sarafoglou, Nikias, 2005. "The tale of two research communities: The diffusion of research on productive efficiency," International Journal of Production Economics, Elsevier, vol. 98(1), pages 17-40, October.
    4. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    5. Juhwan Kim & Sunghae Jun & Dongsik Jang & Sangsung Park, 2018. "Sustainable Technology Analysis of Artificial Intelligence Using Bayesian and Social Network Models," Sustainability, MDPI, vol. 10(1), pages 1-12, January.
    6. Sangsung Park & Sunghae Jun, 2020. "Sustainable Technology Analysis of Blockchain Using Generalized Additive Modeling," Sustainability, MDPI, vol. 12(24), pages 1-15, December.
    7. Andor, Mark A. & Parmeter, Christopher & Sommer, Stephan, 2019. "Combining uncertainty with uncertainty to get certainty? Efficiency analysis for regulation purposes," European Journal of Operational Research, Elsevier, vol. 274(1), pages 240-252.
    8. Kristof Witte & Rui Marques, 2010. "Influential observations in frontier models, a robust non-oriented approach to the water sector," Annals of Operations Research, Springer, vol. 181(1), pages 377-392, December.
    9. Dag Edvardsen & Finn Førsund & Sverre Kittelsen, 2008. "Far out or alone in the crowd: a taxonomy of peers in DEA," Journal of Productivity Analysis, Springer, vol. 29(3), pages 201-210, June.
    10. Mark Andor & Frederik Hesse, 2014. "The StoNED age: the departure into a new era of efficiency analysis? A monte carlo comparison of StoNED and the “oldies” (SFA and DEA)," Journal of Productivity Analysis, Springer, vol. 41(1), pages 85-109, February.
    11. Alptekin Durmuşoğlu, 2017. "Effects of Clean Air Act on Patenting Activities in Chemical Industry: Learning from Past Experiences," Sustainability, MDPI, vol. 9(5), pages 1-10, May.
    12. Petridis, Konstantinos & Malesios, Chrisovalantis & Arabatzis, Garyfallos & Thanassoulis, Emmanuel, 2013. "Efficiency analysis of forestry journals: Suggestions for improving journals’ quality," Journal of Informetrics, Elsevier, vol. 7(2), pages 505-521.
    13. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    14. Lee, Chia-Yen, 2014. "Meta-data envelopment analysis: Finding a direction towards marginal profit maximization," European Journal of Operational Research, Elsevier, vol. 237(1), pages 207-216.
    15. Sangsung Park & Sunghae Jun, 2017. "Statistical Technology Analysis for Competitive Sustainability of Three Dimensional Printing," Sustainability, MDPI, vol. 9(7), pages 1-16, June.
    16. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
    17. Luka Neralić & Richard E. Wendell, 2019. "Sensitivity in DEA: an algorithmic approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(4), pages 1245-1264, December.
    18. Sebastian Kohl & Jan Schoenfelder & Andreas Fügener & Jens O. Brunner, 2019. "The use of Data Envelopment Analysis (DEA) in healthcare with a focus on hospitals," Health Care Management Science, Springer, vol. 22(2), pages 245-286, June.
    19. Rita Bastião & Nuno de Sousa Pereira, 2020. "Performance in the Delivery of Primary Health Care Services: A Longitudinal Analysis," CEF.UP Working Papers 2002, Universidade do Porto, Faculdade de Economia do Porto.
    20. Emrouznejad, Ali & De Witte, Kristof, 2010. "COOPER-framework: A unified process for non-parametric projects," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1573-1586, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:13:p:3597-:d:244316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.