IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v066i09.html
   My bibliography  Save this article

SSMMATLAB: A Set of MATLAB Programs for the Statistical Analysis of State Space Models

Author

Listed:
  • Gómez, Victor

Abstract

This article discusses and describes SSMMATLAB, a set of programs written by the author in MATLAB for the statistical analysis of state space models. The state space model considered is very general. It may have univariate or multivariate observations, time-varying system matrices, exogenous inputs, regression effects, incompletely specified initial conditions, such as those that arise with cointegrated VARMA models, and missing values. There are functions to put frequently used models, such as multiplicative VARMA models, VARMAX models in echelon form, cointegrated VARMA models, and univariate structural or ARIMA model-based unobserved components models, into state space form. There are also functions to implement the Hillmer-Tiao canonical decomposition and the smooth trend and cycle estimation proposed by Gómez (2001). Once the model is in state space form, other functions can be used for likelihood evaluation, model estimation, forecasting and smoothing. A set of examples is presented in the SSMMATLAB manual to illustrate the use of these functions.

Suggested Citation

  • Gómez, Victor, 2015. "SSMMATLAB: A Set of MATLAB Programs for the Statistical Analysis of State Space Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 66(i09).
  • Handle: RePEc:jss:jstsof:v:066:i09
    DOI: http://hdl.handle.net/10.18637/jss.v066.i09
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v066i09/v66i09.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v066i09/SSMMATLAB.zip
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v066i09/v66i09-replication.zip
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v066.i09?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Commandeur, Jacques J. F. & Koopman, Siem Jan & Ooms, Marius, 2011. "Statistical Software for State Space Methods," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 41(i01).
    2. Petris, Giovanni & Petrone, Sonia, 2011. "State Space Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 41(i04).
    3. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    4. Bell, William R., 2011. "REGCMPNT A Fortran Program for Regression Models with ARIMA Component Errors," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 41(i07).
    5. Lucchetti, Riccardo, 2011. "State Space Methods in gretl," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 41(i11).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian, Hang, 2015. "Inequality Constrained State Space Models," MPRA Paper 66447, University Library of Munich, Germany.
    2. Jong-Min Kim & Bainwen Sun & Sunghae Jun, 2019. "Sustainable Technology Analysis Using Data Envelopment Analysis and State Space Models," Sustainability, MDPI, vol. 11(13), pages 1-19, June.
    3. repec:jss:jstsof:41:i01 is not listed on IDEAS
    4. Allin Cottrell & Riccardo (Jack) Lucchetti & Matteo Pelagatti, 2016. "Measures of variance for smoothed disturbances in linear state-space models: a clarification," gretl working papers 3, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    5. repec:jss:jstsof:41:i06 is not listed on IDEAS
    6. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
    7. Punzi, Maria Teresa, 2016. "Financial cycles and co-movements between the real economy, finance and asset price dynamics in large-scale crises," FinMaP-Working Papers 61, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    8. Tomas Konecny & Oxana Babecka-Kucharcukova, 2016. "Credit Spreads and the Links between the Financial and Real Sectors in a Small Open Economy: The Case of the Czech Republic," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 66(4), pages 302-321, August.
    9. Florian Huber & Josef Schreiner, 2023. "Are Phillips curves in CESEE still alive and well behaved?," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue Q3/23, pages 7-27.
    10. Zsolt Darvas, 2013. "Monetary transmission in three central European economies: evidence from time-varying coefficient vector autoregressions," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 40(2), pages 363-390, May.
    11. Vincent Brémond & Emmanuel Hache & Tovonony Razafindrabe, 2016. "The Oil Price and Exchange Rate Relationship Revisited: A time-varying VAR parameter approach," European Journal of Comparative Economics, Cattaneo University (LIUC), vol. 13(1), pages 97-131, June.
    12. Luca Benati & Paolo Surico, 2009. "VAR Analysis and the Great Moderation," American Economic Review, American Economic Association, vol. 99(4), pages 1636-1652, September.
    13. Pooyan Amir-Ahmadi & Christian Matthes & Mu-Chun Wang, 2020. "Choosing Prior Hyperparameters: With Applications to Time-Varying Parameter Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 124-136, January.
    14. Jin‐Yu Chen & Xue‐Hong Zhu & Mei‐Rui Zhong, 2021. "Time‐varying effects and structural change of oil price shocks on industrial output: Evidence from China's oil industrial chain," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 3460-3472, July.
    15. Yang Liu & Mariano Croce & Ivan Shaliastovich & Ric Colacito, 2016. "Volatility Risk Pass-Through," 2016 Meeting Papers 135, Society for Economic Dynamics.
    16. Gary Koop & Dimitris Korobilis, 2019. "Forecasting with High‐Dimensional Panel VARs," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 81(5), pages 937-959, October.
    17. Davide Pettenuzzo & Francesco Ravazzolo, 2016. "Optimal Portfolio Choice Under Decision‐Based Model Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
    18. Gruber, Lutz F. & West, Mike, 2017. "Bayesian online variable selection and scalable multivariate volatility forecasting in simultaneous graphical dynamic linear models," Econometrics and Statistics, Elsevier, vol. 3(C), pages 3-22.
    19. Francesco Bianchi, 2013. "Regime Switches, Agents' Beliefs, and Post-World War II U.S. Macroeconomic Dynamics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 80(2), pages 463-490.
    20. Luca Benati & Paolo Surico, 2008. "Evolving U.S. Monetary Policy and The Decline of Inflation Predictability," Journal of the European Economic Association, MIT Press, vol. 6(2-3), pages 634-646, 04-05.
    21. Olawale Awe O. & Adedayo Adepoju A., 2018. "Modified Recursive Bayesian Algorithm For Estimating Time-Varying Parameters In Dynamic Linear Models," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 258-293, June.
    22. Zhang, Zhikai & Wang, Yudong & Xiao, Jihong & Zhang, Yaojie, 2023. "Not all geopolitical shocks are alike: Identifying price dynamics in the crude oil market under tensions," Resources Policy, Elsevier, vol. 80(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:066:i09. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.