IDEAS home Printed from https://ideas.repec.org/a/jof/jforec/v29y2010i3p271-284.html
   My bibliography  Save this article

Foreign exchange market prediction with multiple classifiers

Author

Listed:
  • Bo Qian

    (Boyd Graduate Studies Research Center, Department of Computer Science, University of Georgia, Athens, Georgia, USA)

  • Khaled Rasheed

    (Boyd Graduate Studies Research Center, Department of Computer Science, University of Georgia, Athens, Georgia, USA)

Abstract

Foreign exchange market prediction is attractive and challenging. According to the efficient market and random walk hypotheses, market prices should follow a random walk pattern and thus should not be predictable with more than about 50% accuracy. In this article, we investigate the predictability of foreign exchange spot rates of the US dollar against the British pound to show that not all periods are equally random. We used the Hurst exponent to select a period with great predictability. Parameters for generating training patterns were determined heuristically by auto-mutual information and false nearest-neighbor methods. Some inductive machine-learning classifiers-artificial neural network, decision tree, k -nearest neighbor, and naïve Bayesian classifier-were then trained with these generated patterns. Through appropriate collaboration of these models, we achieved a prediction accuracy of up to 67%. Copyright © 2009 John Wiley & Sons, Ltd.

Suggested Citation

  • Bo Qian & Khaled Rasheed, 2010. "Foreign exchange market prediction with multiple classifiers," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(3), pages 271-284.
  • Handle: RePEc:jof:jforec:v:29:y:2010:i:3:p:271-284
    DOI: 10.1002/for.1124
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/for.1124
    File Function: Link to full text; subscription required
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.1124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Grech, D & Mazur, Z, 2004. "Can one make any crash prediction in finance using the local Hurst exponent idea?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 133-145.
    2. Marco Corazza & A. G. Malliaris, 2005. "Multi-Fractality in Foreign Currency Markets," World Scientific Book Chapters, in: Economic Uncertainty, Instabilities And Asset Bubbles Selected Essays, chapter 11, pages 151-184, World Scientific Publishing Co. Pte. Ltd..
    3. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    4. Manolis Kavussanos & Everton Dockery, 2001. "A multivariate test for stock market efficiency: the case of ASE," Applied Financial Economics, Taylor & Francis Journals, vol. 11(5), pages 573-579.
    5. Jensen, Michael C., 1978. "Some anomalous evidence regarding market efficiency," Journal of Financial Economics, Elsevier, vol. 6(2-3), pages 95-101.
    6. Fama, Eugene F, et al, 1969. "The Adjustment of Stock Prices to New Information," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 10(1), pages 1-21, February.
    7. Liam A. Gallagher & Mark P. Taylor, 2002. "Permanent and Temporary Components of Stock Prices: Evidence from Assessing Macroeconomic Shocks," Southern Economic Journal, John Wiley & Sons, vol. 69(2), pages 345-362, October.
    8. Fama, Eugene F, 1991. "Efficient Capital Markets: II," Journal of Finance, American Finance Association, vol. 46(5), pages 1575-1617, December.
    9. Hsieh, David A, 1991. "Chaos and Nonlinear Dynamics: Application to Financial Markets," Journal of Finance, American Finance Association, vol. 46(5), pages 1839-1877, December.
    10. Butler, Kirt C. & Malaikah, S. J., 1992. "Efficiency and inefficiency in thinly traded stock markets: Kuwait and Saudi Arabia," Journal of Banking & Finance, Elsevier, vol. 16(1), pages 197-210, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sevcan Uzun & Ahmet Sensoy & Duc Khuong Nguyen, 2023. "Jump forecasting in foreign exchange markets: A high‐frequency analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(3), pages 578-624, April.
    2. Lazăr, Dorina & Todea, Alexandru & Filip, Diana, 2012. "Martingale difference hypothesis and financial crisis: Empirical evidence from European emerging foreign exchange markets," Economic Systems, Elsevier, vol. 36(3), pages 338-350.
    3. Brian D. Deaton, 2018. "Effects of the Swiss Franc/Euro Exchange Rate Floor on the Calibration of Probability Forecasts," Forecasting, MDPI, vol. 1(1), pages 1-23, May.
    4. Tasadduq Imam, 2021. "Model selection for one‐day‐ahead AUD/USD, AUD/EUR forecasts," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 1808-1824, April.
    5. Davood Pirayesh Neghab & Mucahit Cevik & M. I. M. Wahab, 2023. "Explaining Exchange Rate Forecasts with Macroeconomic Fundamentals Using Interpretive Machine Learning," Papers 2303.16149, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter F. Christoffersen & Francis X. Diebold, 2006. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," Management Science, INFORMS, vol. 52(8), pages 1273-1287, August.
    2. Samit Paul, 2020. "Time Varying Efficiency in Indian Sectors: An Event Study on Demonetization," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 18(1), pages 103-127, March.
    3. Thomas Delcey, 2019. "Samuelson vs Fama on the Efficient Market Hypothesis: The Point of View of Expertise [Samuelson vs Fama sur l’efficience informationnelle des marchés financiers : le point de vue de l’expertise]," Post-Print hal-01618347, HAL.
    4. Juan Reboredo & José Matías & Raquel Garcia-Rubio, 2012. "Nonlinearity in Forecasting of High-Frequency Stock Returns," Computational Economics, Springer;Society for Computational Economics, vol. 40(3), pages 245-264, October.
    5. Adam Karp & Gary Van Vuuren, 2019. "Investment Implications Of The Fractal Market Hypothesis," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 1-27, March.
    6. Godfrey, Keith R.L., 2017. "Toward a model-free measure of market efficiency," Pacific-Basin Finance Journal, Elsevier, vol. 44(C), pages 97-112.
    7. Peter Christoffersen & Francis X. Diebold, 2002. "Financial Asset Returns, Market Timing, and Volatility Dynamics," CIRANO Working Papers 2002s-02, CIRANO.
    8. Roland Rothenstein, 2018. "Quantification of market efficiency based on informational-entropy," Papers 1812.02371, arXiv.org.
    9. Claudeci Da Silva & Hugo Agudelo Murillo & Joaquim Miguel Couto, 2014. "Early Warning Systems: Análise De Ummodelo Probit De Contágio De Crise Dos Estados Unidos Para O Brasil(2000-2010)," Anais do XL Encontro Nacional de Economia [Proceedings of the 40th Brazilian Economics Meeting] 110, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    10. Gabriel Frahm, 2013. "Pricing and Valuation under the Real-World Measure," Papers 1304.3824, arXiv.org, revised Jan 2016.
    11. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    12. E. Hui & J. Wright & S. Yam, 2014. "Calendar Effects and Real Estate Securities," The Journal of Real Estate Finance and Economics, Springer, vol. 49(1), pages 91-115, July.
    13. Joe Appiah‐Kusi & Kojo Menyah, 2003. "Return predictability in African stock markets," Review of Financial Economics, John Wiley & Sons, vol. 12(3), pages 247-270.
    14. Asif, Raheel & Frömmel, Michael, 2022. "Testing Long memory in exchange rates and its implications for the adaptive market hypothesis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    15. Marshall, Ben R. & Visaltanachoti, Nuttawat, 2010. "The Other January Effect: Evidence against market efficiency?," Journal of Banking & Finance, Elsevier, vol. 34(10), pages 2413-2424, October.
    16. Majumder, Debasish, 2012. "When the market becomes inefficient: Comparing BRIC markets with markets in the USA," International Review of Financial Analysis, Elsevier, vol. 24(C), pages 84-92.
    17. Gunther Maier & Shanaka Herath, 2009. "Real Estate Market Efficiency: A Survey of Literature," SRE-Disc sre-disc-2009_07, Institute for Multilevel Governance and Development, Department of Socioeconomics, Vienna University of Economics and Business.
    18. Ausloos, Marcel & Jovanovic, Franck & Schinckus, Christophe, 2016. "On the “usual” misunderstandings between econophysics and finance: Some clarifications on modelling approaches and efficient market hypothesis," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 7-14.
    19. Xiao-Qian Sun & Hua-Wei Shen & Xue-Qi Cheng & Yuqing Zhang, 2016. "Market Confidence Predicts Stock Price: Beyond Supply and Demand," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-10, July.
    20. Risso, Wiston Adrián, 2008. "The informational efficiency and the financial crashes," Research in International Business and Finance, Elsevier, vol. 22(3), pages 396-408, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:29:y:2010:i:3:p:271-284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.