IDEAS home Printed from https://ideas.repec.org/a/jof/jforec/v27y2008i7p607-620.html
   My bibliography  Save this article

Is it a short-memory, long-memory, or permanently Granger-causation influence?

Author

Listed:
  • Wen-Den Chen

    (Tung Hai University, PO Box 5-0885, No. 181, Section 3, Taichung-Kan Road, Taichung, Taiwan 407)

Abstract

Exploring the Granger-causation relationship is an important and interesting topic in the field of econometrics. In the traditional model we usually apply the short-memory style to exhibit the relationship, but in practice there could be other different influence patterns. Besides the short-memory relationship, Chen (2006) demonstrates a long-memory relationship, in which a useful approach is provided for estimation where the time series are not necessarily fractionally co-integrated. In that paper two different relationships (short-memory and long-memory relationship) are regarded whereby the influence flow is decayed by geometric, or cutting off, or harmonic sequences. However, it limits the model to the stationary relationship. This paper extends the influence flow to a non-stationary relationship where the limitation is on −0.5 ≤ d ≤ 1.0 and it can be used to detect whether the influence decays off (−0.5 ≤ d < 0.5) or is permanent (0.5 ≤ d ≤ 1.0). Copyright © 2008 John Wiley & Sons, Ltd.

Suggested Citation

  • Wen-Den Chen, 2008. "Is it a short-memory, long-memory, or permanently Granger-causation influence?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(7), pages 607-620.
  • Handle: RePEc:jof:jforec:v:27:y:2008:i:7:p:607-620
    DOI: 10.1002/for.1075
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/for.1075
    File Function: Link to full text; subscription required
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.1075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Leamer, Edward E., 1985. "Vector autoregressions for causal inference?," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 22(1), pages 255-304, January.
    2. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    3. Wen-Den Chen, 2006. "Estimating the long memory granger causality effect with a spectrum estimator," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(3), pages 193-200.
    4. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    5. Robinson, Peter M. & Velasco, Carlos, 2000. "Whittle pseudo-maximum likelihood estimation for nonstationary time series," LSE Research Online Documents on Economics 2273, London School of Economics and Political Science, LSE Library.
    6. Peter M Robinson & Carlos Velasco, 2000. "Whittle Pseudo-Maximum Likelihood Estimation for Nonstationary Time Series - (Now published in Journal of the American Statistical Association, 95, (2000), pp.1229-1243.)," STICERD - Econometrics Paper Series 391, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    2. Yushu Li, 2015. "Estimate Long Memory Causality Relationship by Wavelet Method," Computational Economics, Springer;Society for Computational Economics, vol. 45(4), pages 531-544, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adrian C. Darnell, 1994. "A Dictionary Of Econometrics," Books, Edward Elgar Publishing, number 118.
    2. Douglas Holtz-Eakin & Whitney K. Newey & Harvey S. Rosen, 1989. "Implementing Causality Tests with Panel Data, with an Example from LocalPublic Finance," NBER Technical Working Papers 0048, National Bureau of Economic Research, Inc.
    3. Bierens, H.J. & Broersma, L., 1991. "The relation between unemployment and interest rate : some international evidence," Serie Research Memoranda 0112, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    4. Gossé, Jean-Baptiste & Guillaumin, Cyriac, 2013. "L’apport de la représentation VAR de Christopher A. Sims à la science économique," L'Actualité Economique, Société Canadienne de Science Economique, vol. 89(4), pages 309-319, Décembre.
    5. Robinson, Peter M. & Velasco, Carlos, 2015. "Efficient inference on fractionally integrated panel data models with fixed effects," Journal of Econometrics, Elsevier, vol. 185(2), pages 435-452.
    6. Marin, Dalia, 1992. "Is the Export-Led.Growth Hypothesis Valid for Industrialized Countries?," The Review of Economics and Statistics, MIT Press, vol. 74(4), pages 678-688, November.
    7. Marcelo Leon & Gino Cornejo & Micaela Calderón & Erika González-Carrión & Hector Florez, 2022. "Effect of Deforestation on Climate Change: A Co-Integration and Causality Approach with Time Series," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    8. DELL'ANNO, Roberto & VILLA, Stefania, 2012. "Growth in Transition Countries: Big Bang versus Gradualism," CELPE Discussion Papers 122, CELPE - CEnter for Labor and Political Economics, University of Salerno, Italy.
    9. Guglielmo Maria Caporale & Luis A. Gil-Alana & Alex Plastun, 2017. "Long Memory and Data Frequency in Financial Markets," CESifo Working Paper Series 6396, CESifo.
    10. Ericsson, Neil R & Hendry, David F & Mizon, Grayham E, 1998. "Exogeneity, Cointegration, and Economic Policy Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(4), pages 370-387, October.
    11. David F. Hendry & Grayham E. Mizon, 2016. "Improving the teaching of econometrics," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1170096-117, December.
    12. Guglielmo Caporale & Luis Gil-Alana, 2014. "Fractional integration and cointegration in US financial time series data," Empirical Economics, Springer, vol. 47(4), pages 1389-1410, December.
    13. Caporale, Guglielmo Maria & Gil-Alana, Luis & Plastun, Alex, 2018. "Is market fear persistent? A long-memory analysis," Finance Research Letters, Elsevier, vol. 27(C), pages 140-147.
    14. Robinson, P.M. & Iacone, F., 2005. "Cointegration in fractional systems with deterministic trends," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 263-298.
    15. Yuliya Lovcha & Alejandro Perez-Laborda, 2017. "Structural shocks and dynamic elasticities in a long memory model of the US gasoline retail market," Empirical Economics, Springer, vol. 53(2), pages 405-422, September.
    16. de Meulemeester, Jean-Luc & Rochat, Denis, 1995. "A causality analysis of the link between higher education and economic development," Economics of Education Review, Elsevier, vol. 14(4), pages 351-361, December.
    17. Adelina Gschwandtner & Michael Hauser, 2008. "Modelling profit series: nonstationarity and long memory," Applied Economics, Taylor & Francis Journals, vol. 40(11), pages 1475-1482.
    18. Laura Mayoral, 2007. "Minimum distance estimation of stationary and non-stationary ARFIMA processes," Econometrics Journal, Royal Economic Society, vol. 10(1), pages 124-148, March.
    19. Guglielmo Maria Caporale & Luis Alberiko Gil-Alana & Robert Mudida, 2015. "Testing the Marshall–Lerner Condition in Kenya," South African Journal of Economics, Economic Society of South Africa, vol. 83(2), pages 253-268, June.
    20. Tommaso Proietti & Niels Haldrup & Oskar Knapik, 2017. "Spikes and memory in (Nord Pool) electricity price spot prices," CEIS Research Paper 422, Tor Vergata University, CEIS, revised 18 Dec 2017.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:27:y:2008:i:7:p:607-620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.