IDEAS home Printed from https://ideas.repec.org/a/jns/jbstat/v224y2004i1-2p166-184.html
   My bibliography  Save this article

Ein Prognose- und Simulationswerkzeug zur Unterstützung der kurzfristigen Personalbedarfsplanung in einem Call Center / A Forecasting and Simulation Tool for Personnel Requirement in a Call Center

Author

Listed:
  • Schuhr Roland

    (Schuhr, Wirtschaftswissenschaftliche Fakultät der Universität Leipzig, D-04109 Leipzig, Germany)

Abstract

Since call center services are labour-intensive, human resource planning is a critical management task in terms of service quality and operating costs. This paper introduces a planning software tool to support short-term human resource planning. It is designed to forecast the stream of inbound telephone calls and to simulate transaction processes in order to estimate the minimum number of call center agents, required to achieve service objectives at a future working day.

Suggested Citation

  • Schuhr Roland, 2004. "Ein Prognose- und Simulationswerkzeug zur Unterstützung der kurzfristigen Personalbedarfsplanung in einem Call Center / A Forecasting and Simulation Tool for Personnel Requirement in a Call Center," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 224(1-2), pages 166-184, February.
  • Handle: RePEc:jns:jbstat:v:224:y:2004:i:1-2:p:166-184
    DOI: 10.1515/jbnst-2004-1-213
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jbnst-2004-1-213
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jbnst-2004-1-213?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tych, Wlodek & Pedregal, Diego J. & Young, Peter C. & Davies, John, 2002. "An unobserved component model for multi-rate forecasting of telephone call demand: the design of a forecasting support system," International Journal of Forecasting, Elsevier, vol. 18(4), pages 673-695.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nabil Channouf & Pierre L’Ecuyer & Armann Ingolfsson & Athanassios Avramidis, 2007. "The application of forecasting techniques to modeling emergency medical system calls in Calgary, Alberta," Health Care Management Science, Springer, vol. 10(1), pages 25-45, February.
    2. Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
    3. Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2019. "Statistical and economic evaluation of time series models for forecasting arrivals at call centers," Empirical Economics, Springer, vol. 57(3), pages 923-955, September.
    4. Rajae Azrak & Guy Melard & Hassane Njimi, 2004. "Forecasting in the analysis of mobile telecommunication data: correction for outliers and replacement of missing observations," ULB Institutional Repository 2013/13748, ULB -- Universite Libre de Bruxelles.
    5. Theresa Maria Rausch & Tobias Albrecht & Daniel Baier, 2022. "Beyond the beaten paths of forecasting call center arrivals: on the use of dynamic harmonic regression with predictor variables," Journal of Business Economics, Springer, vol. 92(4), pages 675-706, May.
    6. Tung-Shan Liao, 2017. "Interaction Model of Superior Performance Based on Technological Resources and Competitive Actions in the Nascent Cycle of the Tablet Industry," Business, Management and Economics Research, Academic Research Publishing Group, vol. 3(11), pages 218-231, 11-2017.
    7. James W. Taylor, 2008. "A Comparison of Univariate Time Series Methods for Forecasting Intraday Arrivals at a Call Center," Management Science, INFORMS, vol. 54(2), pages 253-265, February.
    8. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    9. Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2011. "Forecast Evaluation in Call Centers: Combined Forecasts, Flexible Loss Functions and Economic Criteria," UNIMI - Research Papers in Economics, Business, and Statistics unimi-1109, Universitá degli Studi di Milano.
    10. Taylor, James W. & Snyder, Ralph D., 2012. "Forecasting intraday time series with multiple seasonal cycles using parsimonious seasonal exponential smoothing," Omega, Elsevier, vol. 40(6), pages 748-757.
    11. Meade, Nigel & Islam, Towhidul, 2015. "Forecasting in telecommunications and ICT—A review," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1105-1126.
    12. D J Pedregal & P C Young, 2008. "Development of improved adaptive approaches to electricity demand forecasting," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1066-1076, August.
    13. Taylor, James W., 2010. "Exponentially weighted methods for forecasting intraday time series with multiple seasonal cycles," International Journal of Forecasting, Elsevier, vol. 26(4), pages 627-646, October.
    14. Rajae Azrak & Guy Melard & Hassane Njimi, 2003. "Forecasting in the analysis of mobile telecommunication data: correction for outliers and replacement of missing observations," ULB Institutional Repository 2013/13836, ULB -- Universite Libre de Bruxelles.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jns:jbstat:v:224:y:2004:i:1-2:p:166-184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.