IDEAS home Printed from https://ideas.repec.org/a/hin/complx/9502872.html
   My bibliography  Save this article

Communication in Online Social Networks Fosters Cultural Isolation

Author

Listed:
  • Marijn A. Keijzer
  • Michael Mäs
  • Andreas Flache

Abstract

Online social networks play an increasingly important role in communication between friends, colleagues, business partners, and family members. This development sparked public and scholarly debate about how these new platforms affect dynamics of cultural diversity. Formal models of cultural dissemination are powerful tools to study dynamics of cultural diversity but they are based on assumptions that represent traditional dyadic, face-to-face communication, rather than communication in online social networks. Unlike in models of face-to-face communication, where actors update their cultural traits after being influenced by one of their network contacts, communication in online social networks is often characterized by a one-to-many structure, in that users emit messages directly to a large number of network contacts. Using analytical tools and agent-based simulation, we show that this seemingly subtle difference can have profound implications for emergent dynamics of cultural dissemination. In particular, we show that within the framework of our model online communication fosters cultural diversity to a larger degree than offline communication and it increases chances that individuals and subgroups become culturally isolated from their network contacts.

Suggested Citation

  • Marijn A. Keijzer & Michael Mäs & Andreas Flache, 2018. "Communication in Online Social Networks Fosters Cultural Isolation," Complexity, Hindawi, vol. 2018, pages 1-18, November.
  • Handle: RePEc:hin:complx:9502872
    DOI: 10.1155/2018/9502872
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/9502872.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/9502872.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/9502872?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wong, Ling Heng & Pattison, Philippa & Robins, Garry, 2006. "A spatial model for social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(1), pages 99-120.
    2. repec:sae:jocore:v:55:y:2011:i:6:p:970-955 is not listed on IDEAS
    3. Eric Pulick & Patrick Korth & Patrick Grim & Jiin Jung, 2016. "Modeling Interaction Effects in Polarization: Individual Media Influence and the Impact of Town Meetings," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(2), pages 1-1.
    4. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    5. Dongwon Lim & Hwansoo Lee & Hangjung Zo & Andrew Ciganek, 2014. "Opinion Formation in the Digital Divide," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 17(1), pages 1-13.
    6. Sze-Sze Wong & Richard M. Burton, 2000. "Virtual Teams: What are their Characteristics, and Impact on Team Performance?," Computational and Mathematical Organization Theory, Springer, vol. 6(4), pages 339-360, December.
    7. Andreas Flache & Michael Mäs & Thomas Feliciani & Edmund Chattoe-Brown & Guillaume Deffuant & Sylvie Huet & Jan Lorenz, 2017. "Models of Social Influence: Towards the Next Frontiers," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(4), pages 1-2.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deffuant, Guillaume & Keijzer, Marijn & Banisch, Sven, 2023. "Regular access to constantly renewed online content favors radicalization of opinions," IAST Working Papers 23-154, Institute for Advanced Study in Toulouse (IAST).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guillaume Deffuant & Ilaria Bertazzi & Sylvie Huet, 2018. "The Dark Side Of Gossips: Hints From A Simple Opinion Dynamics Model," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-20, September.
    2. G Jordan Maclay & Moody Ahmad, 2021. "An agent based force vector model of social influence that predicts strong polarization in a connected world," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-42, November.
    3. Deffuant, Guillaume & Roubin, Thibaut, 2023. "Emergence of group hierarchy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    4. Deffuant, Guillaume & Roubin, Thibaut, 2022. "Do interactions among unequal agents undermine those of low status?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    5. Michel Grabisch & Agnieszka Rusinowska, 2020. "A Survey on Nonstrategic Models of Opinion Dynamics," Games, MDPI, vol. 11(4), pages 1-29, December.
    6. Patrick Mellacher, 2021. "Opinion Dynamics with Conflicting Interests," Papers 2111.09408, arXiv.org.
    7. Ambrosius, Floor H.W. & Kramer, Mark R. & Spiegel, Alisa & Bokkers, Eddie A.M. & Bock, Bettina B. & Hofstede, Gert Jan, 2022. "Diffusion of organic farming among Dutch pig farmers: An agent-based model," Agricultural Systems, Elsevier, vol. 197(C).
    8. Bruce Edmonds, 2020. "Co-developing beliefs and social influence networks—towards understanding socio-cognitive processes like Brexit," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(2), pages 491-515, April.
    9. Takesue, Hirofumi, 2023. "Relative opinion similarity leads to the emergence of large clusters in opinion formation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    10. Christian Ganser & Marc Keuschnigg, 2018. "Social Influence Strengthens Crowd Wisdom Under Voting," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-23, September.
    11. Jan Lorenz & Martin Neumann, 2018. "Opinion Dynamics And Collective Decisions," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-9, September.
    12. Maciel, Marcelo V. & Martins, André C.R., 2020. "Ideologically motivated biases in a multiple issues opinion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    13. Deffuant, Guillaume & Keijzer, Marijn & Banisch, Sven, 2023. "Regular access to constantly renewed online content favors radicalization of opinions," IAST Working Papers 23-154, Institute for Advanced Study in Toulouse (IAST).
    14. Pádraig MacCarron & Paul J Maher & Susan Fennell & Kevin Burke & James P Gleeson & Kevin Durrheim & Michael Quayle, 2020. "Agreement threshold on Axelrod’s model of cultural dissemination," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-13, June.
    15. Tanzhe Tang & Amineh Ghorbani & Flaminio Squazzoni & Caspar G. Chorus, 2022. "Together alone: a group-based polarization measurement," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(5), pages 3587-3619, October.
    16. Pedraza, Lucía & Pinasco, Juan Pablo & Semeshenko, Viktoriya & Balenzuela, Pablo, 2023. "Mesoscopic analytical approach in a three state opinion model with continuous internal variable," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    17. Schweitzer, Frank, 2021. "Social percolation revisited: From 2d lattices to adaptive networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    18. Lipiecki, Arkadiusz & Sznajd-Weron, Katarzyna, 2022. "Polarization in the three-state q-voter model with anticonformity and bounded confidence," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    19. Tanzhe Tang & Caspar G. Chorus, 2019. "Learning Opinions by Observing Actions: Simulation of Opinion Dynamics Using an Action-Opinion Inference Model," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 22(3), pages 1-2.
    20. Sylvie Huet & Jean-Denis Mathias, 2018. "Few Self-Involved Agents Among Bounded Confidence Agents Can Change Norms," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-27, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:9502872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.