IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2011-40-2.html
   My bibliography  Save this article

Challenges in Modelling Social Conflicts: Grappling with Polysemy

Author

Listed:
  • Martin Neumann
  • Andreas Braun
  • Eva-Maria Heinke
  • Mehdi Saqalli
  • Armano Srbljinovic

Abstract

This discussion paper originates from the preceding annual workshop of the Special Interest Group on Social Conflict and Social Simulation (SIG-SCSS) of the ESSA. The workshop especially focused on the need to identify and examine challenges to modeling social conflicts. It turned out that the polysemous nature of social conflicts makes it very difficult to get a grasp of their complexity. In order to deal with this complexity, various dimensions have to be taken into consideration, beginning with the question of how to identify a conflict in the first place. Other dimensions include the relation of conflict and rationality and how to include non-rational factors into conflict models. This involves a conception of organized action. Finally, guiding principles for model development are being discussed. We would like to invite readers of the Journal of Artificial Societies and Social Simulation to 'sow the seeds' of this debate.

Suggested Citation

  • Martin Neumann & Andreas Braun & Eva-Maria Heinke & Mehdi Saqalli & Armano Srbljinovic, 2011. "Challenges in Modelling Social Conflicts: Grappling with Polysemy," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 14(3), pages 1-9.
  • Handle: RePEc:jas:jasssj:2011-40-2
    as

    Download full text from publisher

    File URL: https://www.jasss.org/14/3/9/9.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thierry Kirat & André Torre & Armelle Caron & Anastasia Aviles & Christine Lefranc & Marina Galman & Romain Melot & Cécile Rialland & Maria-Isabel Salazar, 2004. "Modalités d'émergence et procédures de résolution des conflits d'usage autour de l'espace et des ressources naturelles. Analyse dans les espaces ruraux," Post-Print halshs-00004202, HAL.
    2. Matteo Richiardi & Roberto Leombruni & Nicole J. Saam & Michele Sonnessa, 2006. "A Common Protocol for Agent-Based Social Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 9(1), pages 1-15.
    3. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    4. Guillaume Deffuant & Frederic Amblard & Gérard Weisbuch, 2002. "How Can Extremism Prevail? a Study Based on the Relative Agreement Interaction Model," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(4), pages 1-1.
    5. Ragin, Charles C., 2000. "Fuzzy-Set Social Science," University of Chicago Press Economics Books, University of Chicago Press, edition 1, number 9780226702773.
    6. Samuel Thiriot & Jean-Daniel Kant, 2008. "Using Associative Networks To Represent Adopters' Beliefs In A Multiagent Model Of Innovation Diffusion," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 11(02), pages 261-272.
    7. Lynne Hamill, 2010. "Agent-Based Modelling: The Next 15 Years," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 13(4), pages 1-7.
    8. repec:ucp:bkecon:9780226702766 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shane T. Mueller & Yin-Yin Sarah Tan, 2018. "Cognitive perspectives on opinion dynamics: the role of knowledge in consensus formation, opinion divergence, and group polarization," Journal of Computational Social Science, Springer, vol. 1(1), pages 15-48, January.
    2. George Butler & Gabriella Pigozzi & Juliette Rouchier, 2019. "Mixing Dyadic and Deliberative Opinion Dynamics in an Agent-Based Model of Group Decision-Making," Complexity, Hindawi, vol. 2019, pages 1-31, August.
    3. Flaminio Squazzoni, 2010. "The impact of agent-based models in the social sciences after 15 years of incursions," History of Economic Ideas, Fabrizio Serra Editore, Pisa - Roma, vol. 18(2), pages 197-234.
    4. Wander Jager & Frédéric Amblard, 2005. "Uniformity, Bipolarization and Pluriformity Captured as Generic Stylized Behavior with an Agent-Based Simulation Model of Attitude Change," Computational and Mathematical Organization Theory, Springer, vol. 10(4), pages 295-303, January.
    5. Gabbay, Michael, 2007. "The effects of nonlinear interactions and network structure in small group opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(1), pages 118-126.
    6. AskariSichani, Omid & Jalili, Mahdi, 2015. "Influence maximization of informed agents in social networks," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 229-239.
    7. Robinson, Scott A. & Rai, Varun, 2015. "Determinants of spatio-temporal patterns of energy technology adoption: An agent-based modeling approach," Applied Energy, Elsevier, vol. 151(C), pages 273-284.
    8. Song, Xiao & Shi, Wen & Ma, Yaofei & Yang, Chen, 2015. "Impact of informal networks on opinion dynamics in hierarchically formal organization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 916-924.
    9. Gary Mckeown & Noel Sheehy, 2006. "Mass Media and Polarisation Processes in the Bounded Confidence Model of Opinion Dynamics," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 9(1), pages 1-11.
    10. Melatagia Yonta, Paulin & Ndoundam, René, 2009. "Opinion dynamics using majority functions," Mathematical Social Sciences, Elsevier, vol. 57(2), pages 223-244, March.
    11. Pedraza, Lucía & Pinasco, Juan Pablo & Saintier, Nicolas & Balenzuela, Pablo, 2021. "An analytical formulation for multidimensional continuous opinion models," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    12. Jalili, Mahdi, 2013. "Social power and opinion formation in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 959-966.
    13. Shyam Gouri Suresh & Scott Jeffrey, 2017. "The Consequences of Social Pressures on Partisan Opinion Dynamics," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 43(2), pages 242-259, March.
    14. Bruce Edmonds, 2020. "Co-developing beliefs and social influence networks—towards understanding socio-cognitive processes like Brexit," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(2), pages 491-515, April.
    15. Juliette Rouchier & Emily Tanimura, 2012. "When overconfident agents slow down collective learning," Post-Print hal-00623966, HAL.
    16. Liu, Qipeng & Wang, Xiaofan, 2013. "Social learning with bounded confidence and heterogeneous agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2368-2374.
    17. Byrka, Katarzyna & Jȩdrzejewski, Arkadiusz & Sznajd-Weron, Katarzyna & Weron, Rafał, 2016. "Difficulty is critical: The importance of social factors in modeling diffusion of green products and practices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 723-735.
    18. Biondo, A.E. & Pluchino, A. & Rapisarda, A., 2018. "Modeling surveys effects in political competitions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 714-726.
    19. Zhu, Hou & Hu, Bin, 2018. "Impact of information on public opinion reversal—An agent based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 578-587.
    20. Juliette Rouchier & Paola Tubaro & Cécile Emery, 2014. "Opinion transmission in organizations: an agent-based modeling approach," Computational and Mathematical Organization Theory, Springer, vol. 20(3), pages 252-277, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2011-40-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.