IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2007-8-3.html
   My bibliography  Save this article

Agent-Based Emergency Evacuation Simulation with Individuals with Disabilities in the Population

Author

Listed:
  • Keith Christensen
  • Yuya Sasaki

Abstract

Catastrophic events have raised numerous issues concerning how effectively the built environment accommodates the evacuation needs of individuals with disabilities. Individuals with disabilities represent a significant, yet often overlooked, portion of the population disproportionately affected in emergency situations. Incorporating disability considerations into emergency evacuation planning, preparation, and other activities is critical. The most widely applied method used to evaluate how effectively the built environment accommodates emergency evacuations is agent-based or microsimulation modeling. However, current evacuation models do not adequately address individuals with disabilities in their simulated populations. This manuscript describes the BUMMPEE model, an agent-based simulation capable of classifying the built environment according to environmental characteristics and simulating a heterogeneous population according to variation in individual criteria. The method allows for simulated behaviors which more aptly represent the diversity and prevalence of disabilities in the population and their interaction with the built environment. Comparison of the results of an evacuation simulated using the BUMMPEE model is comparable to a physical evacuation with a similar population and setting. The results of the comparison indicate that the BUMMPEE model is a reasonable approach for simulating evacuations representing the diversity and prevalence of disability in the population

Suggested Citation

  • Keith Christensen & Yuya Sasaki, 2008. "Agent-Based Emergency Evacuation Simulation with Individuals with Disabilities in the Population," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 11(3), pages 1-9.
  • Handle: RePEc:jas:jasssj:2007-8-3
    as

    Download full text from publisher

    File URL: https://www.jasss.org/11/3/9/9.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dirk Helbing & Lubos Buzna & Anders Johansson & Torsten Werner, 2005. "Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions," Transportation Science, INFORMS, vol. 39(1), pages 1-24, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karolina Żydek & Małgorzata Król & Aleksander Król, 2021. "RETRACTED: Evacuation Simulation Focusing on Modeling of Disabled People Movement," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    2. Stuart, Daniel S. & Sharifi, Mohammad Sadra & Christensen, Keith M. & Chen, Anthony & Kim, Yong Seog & Chen, YangQuan, 2019. "Crowds involving individuals with disabilities: Modeling heterogeneity using Fractional Order Potential Fields and the Social Force Model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 244-258.
    3. Yunyun Niu & Jieqiong Zhang & Yongpeng Zhang & Jianhua Xiao, 2019. "Modeling Evacuation of High-Rise Buildings Based on Intelligence Decision P System," Sustainability, MDPI, vol. 11(17), pages 1-17, August.
    4. Yu Zhang & Jason Leezer, 2010. "Simulating human-like decisions in a memory-based agent model," Computational and Mathematical Organization Theory, Springer, vol. 16(4), pages 373-399, December.
    5. Tomoki Tanaka & Yuki Matsuda & Manato Fujimoto & Hirohiko Suwa & Keiichi Yasumoto, 2021. "Evacuation Shelter Decision Method Considering Non-Cooperative Evacuee Behavior to Support the Disaster Weak," Sustainability, MDPI, vol. 13(9), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    2. Shiwakoti, Nirajan & Sarvi, Majid, 2013. "Understanding pedestrian crowd panic: a review on model organisms approach," Journal of Transport Geography, Elsevier, vol. 26(C), pages 12-17.
    3. Lian, Liping & Song, Weiguo & Yuen, Kwok Kit Richard & Telesca, Luciano, 2018. "Investigating the time evolution of some parameters describing inflow processes of pedestrians in a room," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 77-88.
    4. Ju-Sung Lee & Tatiana Filatova & Arika Ligmann-Zielinska & Behrooz Hassani-Mahmooei & Forrest Stonedahl & Iris Lorscheid & Alexey Voinov & J. Gareth Polhill & Zhanli Sun & Dawn C. Parker, 2015. "The Complexities of Agent-Based Modeling Output Analysis," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(4), pages 1-4.
    5. Saberi, Meead & Aghabayk, Kayvan & Sobhani, Amir, 2015. "Spatial fluctuations of pedestrian velocities in bidirectional streams: Exploring the effects of self-organization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 120-128.
    6. Wang, Jiayue & Boltes, Maik & Seyfried, Armin & Zhang, Jun & Ziemer, Verena & Weng, Wenguo, 2018. "Linking pedestrian flow characteristics with stepping locomotion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 106-120.
    7. Ma, Liang & Chen, Bin & Wang, Xiaodong & Zhu, Zhengqiu & Wang, Rongxiao & Qiu, Xiaogang, 2019. "The analysis on the desired speed in social force model using a data driven approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 894-911.
    8. Cao, Mengxiao & Zhang, Guijuan & Wang, Mengsi & Lu, Dianjie & Liu, Hong, 2017. "A method of emotion contagion for crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 250-258.
    9. Qingyan Ning & Maosheng Li, 2022. "Modeling Pedestrian Detour Behavior By-Passing Conflict Areas," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    10. Guo, Ren-Yong, 2014. "Simulation of spatial and temporal separation of pedestrian counter flow through a bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 428-439.
    11. Isabel J. Raabe & Alexander Ehlert & David Johann & Heiko Rauhut, 2020. "Satisfaction of scientists during the COVID-19 pandemic lockdown," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-7, December.
    12. Ziyou Gao & Yunchao Qu & Xingang Li & Jiancheng Long & Hai-Jun Huang, 2014. "Simulating the Dynamic Escape Process in Large Public Places," Operations Research, INFORMS, vol. 62(6), pages 1344-1357, December.
    13. Zhou, Zi-Xuan & Nakanishi, Wataru & Asakura, Yasuo, 2021. "Data-driven framework for the adaptive exit selection problem in pedestrian flow: Visual information based heuristics approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    14. Nanda Wijermans & René Jorna & Wander Jager & Tony van Vliet & Otto Adang, 2013. "CROSS: Modelling Crowd Behaviour with Social-Cognitive Agents," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 16(4), pages 1-1.
    15. Feliciani, Claudio & Jia, Xiaolu & Murakami, Hisashi & Ohtsuka, Kazumichi & Vizzari, Giuseppe & Nishinari, Katsuhiro, 2023. "Social groups in pedestrian crowds as physical and cognitive entities: Extent of modeling and motion prediction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    16. Liao, Weichen & Tordeux, Antoine & Seyfried, Armin & Chraibi, Mohcine & Drzycimski, Kevin & Zheng, Xiaoping & Zhao, Ying, 2016. "Measuring the steady state of pedestrian flow in bottleneck experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 248-261.
    17. Hänseler, Flurin S. & Bierlaire, Michel & Farooq, Bilal & Mühlematter, Thomas, 2014. "A macroscopic loading model for time-varying pedestrian flows in public walking areas," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 60-80.
    18. Vitanov, Nikolay K. & Vitanov, Kaloyan N., 2018. "On the motion of substance in a channel of a network and human migration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1277-1294.
    19. Liu, Qian, 2018. "The effect of dedicated exit on the evacuation of heterogeneous pedestrians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 305-323.
    20. Heng Wang & Tiandong Xu & Feng Li, 2021. "A Novel Emergency Evacuation Model of Subway Station Passengers Considering Personality Traits," Sustainability, MDPI, vol. 13(18), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2007-8-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.