IDEAS home Printed from https://ideas.repec.org/a/jaf/journl/v13y2022i1n398.html
   My bibliography  Save this article

Conception d’un modèle microscopique adapté aux marchés financiers émergents

Author

Listed:
  • Ahmed El OUBANI
  • Mostafa LEKHAL

Abstract

Objectif : L’objectif de cet article est de concevoir un modèle microscopique, sous l'Hypothèse des Marchés Adaptatifs (AMH), capable d'expliquer la formation des prix d'équilibre et la dynamique d'efficience du marché financier marocain. Méthodes : Notre modèle combine le comportement des investisseurs et la microstructure du marché. Pour valider le modèle, nous avons réalisé des simulations sous deux scénarios. Le premier scénario intègre les deux compartiments du modèle. Le deuxième scénario étudie uniquement l’effet de la microstructure. Résultats : Les simulations numériques montrent que le modèle est validé empiriquement par rapport aux faits observés sur le marché marocain. Originalité/Implications : C’est le premier modèle réalisé sous l’AMH qui tient compte des spécificités des marchés financiers émergents comme le marché financier marocain. Le modèle a des implications importantes aussi bien pour les politiques de régulation que pour la construction des stratégies d’investissement.

Suggested Citation

  • Ahmed El OUBANI & Mostafa LEKHAL, 2022. "Conception d’un modèle microscopique adapté aux marchés financiers émergents," Journal of Academic Finance, RED research unit, university of Gabes, Tunisia, vol. 13(1), pages 17-30, June.
  • Handle: RePEc:jaf:journl:v:13:y:2022:i:1:n:398
    as

    Download full text from publisher

    File URL: http://34.195.102.181/journal/index.php/index/article/view/514
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. LeBaron, Blake, 2001. "Evolution And Time Horizons In An Agent-Based Stock Market," Macroeconomic Dynamics, Cambridge University Press, vol. 5(02), pages 225-254, April.
    2. Chiarella, Carl & Iori, Giulia, 2009. "The impact of heterogeneous trading rules on the limit order book and order flows," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 525-537.
    3. Thomas Lux & Michele Marchesi, 2000. "Volatility Clustering In Financial Markets: A Microsimulation Of Interacting Agents," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 675-702.
    4. Iori, Giulia, 2002. "A microsimulation of traders activity in the stock market: the role of heterogeneity, agents' interactions and trade frictions," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 269-285, October.
    5. A. I. McLeod & W. K. Li, 1983. "Diagnostic Checking Arma Time Series Models Using Squared‐Residual Autocorrelations," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 269-273, July.
    6. Carl Chiarella & Giulia Iori, 2002. "A simulation analysis of the microstructure of double auction markets," Quantitative Finance, Taylor & Francis Journals, vol. 2(5), pages 346-353.
    7. LeBaron, Blake, 2006. "Agent-based Computational Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 24, pages 1187-1233, Elsevier.
    8. D. Challet & A. Chessa & M. Marsili & Y-C. Zhang, 2001. "From Minority Games to real markets," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 168-176.
    9. Cross, Rod & Grinfeld, Michael & Lamba, Harbir & Seaman, Tim, 2005. "A threshold model of investor psychology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 463-478.
    10. Ilija Zovko & J Doyne Farmer, 2002. "The power of patience: a behavioural regularity in limit-order placement," Quantitative Finance, Taylor & Francis Journals, vol. 2(5), pages 387-392.
    11. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    12. Kian‐Ping Lim & Robert Brooks, 2011. "The Evolution Of Stock Market Efficiency Over Time: A Survey Of The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 25(1), pages 69-108, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiahua Wang & Hongliang Zhu & Dongxin Li, 2018. "Price Dynamics in an Order-Driven Market with Bayesian Learning," Complexity, Hindawi, vol. 2018, pages 1-15, November.
    2. Pyo, Dong-Jin, 2015. "Animal spirits and stock market dynamics," ISU General Staff Papers 201501010800005596, Iowa State University, Department of Economics.
    3. Yamamoto, Ryuichi, 2019. "Dynamic Predictor Selection And Order Splitting In A Limit Order Market," Macroeconomic Dynamics, Cambridge University Press, vol. 23(5), pages 1757-1792, July.
    4. Georges, Christophre, 2008. "Staggered updating in an artificial financial market," Journal of Economic Dynamics and Control, Elsevier, vol. 32(9), pages 2809-2825, September.
    5. Vivien Lespagnol & Juliette Rouchier, 2018. "Trading Volume and Price Distortion: An Agent-Based Model with Heterogenous Knowledge of Fundamentals," Post-Print hal-02084910, HAL.
    6. Pyo, Dong-Jin, 2014. "A Multi-Factor Model of Heterogeneous Traders in a Dynamic Stock Market," Staff General Research Papers Archive 37358, Iowa State University, Department of Economics.
    7. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    8. Alessio Emanuele Biondo, 2018. "Order book microstructure and policies for financial stability," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 35(1), pages 196-218, March.
    9. Biondo, Alessio Emanuele & Mazzarino, Laura & Pluchino, Alessandro, 2024. "Trading strategies and Financial Performances: A simulation approach," International Review of Financial Analysis, Elsevier, vol. 95(PB).
    10. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    11. Alexandru Mandes & Peter Winker, 2017. "Complexity and model comparison in agent based modeling of financial markets," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(3), pages 469-506, October.
    12. Biondo, Alessio Emanuele, 2017. "Learning to forecast, risk aversion, and microstructural aspects of financial stability," Economics Discussion Papers 2017-104, Kiel Institute for the World Economy (IfW Kiel).
    13. Isao Yagi & Yuji Masuda & Takanobu Mizuta, 2020. "Analysis of the Impact of High-Frequency Trading on Artificial Market Liquidity," Papers 2010.13038, arXiv.org.
    14. Alessio Emanuele Biondo, 2020. "Information versus imitation in a real-time agent-based model of financial markets," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(3), pages 613-631, July.
    15. Daniel Fricke & Thomas Lux, 2015. "The effects of a financial transaction tax in an artificial financial market," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 10(1), pages 119-150, April.
    16. Antonio Doria, Francisco, 2011. "J.B. Rosser Jr. , Handbook of Research on Complexity, Edward Elgar, Cheltenham, UK--Northampton, MA, USA (2009) 436 + viii pp., index, ISBN 978 1 84542 089 5 (cased)," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1-2), pages 196-204, April.
    17. Tubbenhauer, Tobias & Fieberg, Christian & Poddig, Thorsten, 2021. "Multi-agent-based VaR forecasting," Journal of Economic Dynamics and Control, Elsevier, vol. 131(C).
    18. Alessio Emanuele Biondo, 2019. "Order book modeling and financial stability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(3), pages 469-489, September.
    19. Vivien Lespagnol & Juliette Rouchier, 2018. "Trading Volume and Price Distortion: An Agent-Based Model with Heterogenous Knowledge of Fundamentals," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 991-1020, April.
    20. Biondo, Alessio Emanuele, 2018. "Learning to forecast, risk aversion, and microstructural aspects of financial stability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-21.

    More about this item

    Keywords

    Hypothèse d’Efficience des Marchés (EMH); Hypothèse des Marchés Adaptatifs (AMH); faits stylisés; degré d’efficience variable au cours du temps; Modèle à base d’agents (ABM); Adaptive Markets Hypothesis (AMH); Agent-Based Model (ABM); Degree of time-varying market efficiency; Efficiency Market Hypothesis (EMH); stylized facts;
    All these keywords.

    JEL classification:

    • M1 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration
    • N8 - Economic History - - Micro-Business History
    • G3 - Financial Economics - - Corporate Finance and Governance

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jaf:journl:v:13:y:2022:i:1:n:398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oussama Quentin Kasseh (email available below). General contact details of provider: https://edirc.repec.org/data/urredtn.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.