IDEAS home Printed from https://ideas.repec.org/a/inp/inpana/v5y2013i1p39-48.html
   My bibliography  Save this article

Cuantificación del riesgo operacional mediante modelos de pérdidas agregadas y simulación de Monte Carlo

Author

Listed:
  • Marco Flores

    (Departamento de Ingeniería Eléctrica y Electrónica, Escuela Politécnica del Ejército, Quito, Ecuador)

Abstract

En este actículo se presenta un software diseñado para estimar la dotación de capital por Riesgo Operacional (RO) utilizando modelos de pérdidas agregadas, siguiendo los requerimientos planteados en Basilea II y utilizando el método Monte Carlo para la solución numérica. Este sistema estima y analiza los parámetros de las funciones de frecuencia y severidad para luego simular la distribución por pérdidas agregadas (LDA), y finalmente calcular la dotación de capital. Para validar la propuesta, se incluyen los resultados de varios experimentos de casos simulados y reales, bajo distintas funciones de distribución clásicas.

Suggested Citation

  • Marco Flores, 2013. "Cuantificación del riesgo operacional mediante modelos de pérdidas agregadas y simulación de Monte Carlo," Analítika, Analítika - Revista de Análisis Estadístico/Journal of Statistical Analysis, vol. 5(1), pages 39-48, Junio.
  • Handle: RePEc:inp:inpana:v:5:y:2013:i:1:p:39-48
    as

    Download full text from publisher

    File URL: http://www.numericaiid.com/pdf/vol5/ANAJun2013_39_48.pdf
    Download Restriction: no

    File URL: http://www.numericaiid.com/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patrick de Fontnouvelle & Eric Rosengren & John Jordan, 2007. "Implications of Alternative Operational Risk Modeling Techniques," NBER Chapters, in: The Risks of Financial Institutions, pages 475-505, National Bureau of Economic Research, Inc.
    2. Manfred Gilli & Evis këllezi, 2006. "An Application of Extreme Value Theory for Measuring Financial Risk," Computational Economics, Springer;Society for Computational Economics, vol. 27(2), pages 207-228, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    2. Carlin C. F. Chu & Simon S. W. Li, 2024. "A multiobjective optimization approach for threshold determination in extreme value analysis for financial time series," Computational Management Science, Springer, vol. 21(1), pages 1-14, June.
    3. Amira Dridi & Mohamed El Ghourabi & Mohamed Limam, 2012. "On monitoring financial stress index with extreme value theory," Quantitative Finance, Taylor & Francis Journals, vol. 12(3), pages 329-339, March.
    4. Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
    5. M. Naresh Kumar & V. Sree Hari Rao, 2015. "A New Methodology for Estimating Internal Credit Risk and Bankruptcy Prediction under Basel II Regime," Computational Economics, Springer;Society for Computational Economics, vol. 46(1), pages 83-102, June.
    6. Alina Mihaela Dima, 2009. "Operational Risk Assesement Tools for Quality Management in Banking Services," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 11(26), pages 364-372, June.
    7. Xia Yang & Jing Zhang & Wei-Xin Ren, 2018. "Threshold selection for extreme value estimation of vehicle load effect on bridges," International Journal of Distributed Sensor Networks, , vol. 14(2), pages 15501477187, February.
    8. S�verine Plunus & Georges Hübner & Jean-Philippe Peters, 2012. "Measuring operational risk in financial institutions," Applied Financial Economics, Taylor & Francis Journals, vol. 22(18), pages 1553-1569, September.
    9. Xin Chen & Zhangming Shan & Decai Tang & Biao Zhou & Valentina Boamah, 2023. "Interest rate risk of Chinese commercial banks based on the GARCH-EVT model," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-11, December.
    10. Chao Wang & Richard Gerlach, 2019. "Semi-parametric Realized Nonlinear Conditional Autoregressive Expectile and Expected Shortfall," Papers 1906.09961, arXiv.org.
    11. Jian Zhou, 2012. "Extreme risk measures for REITs: a comparison among alternative methods," Applied Financial Economics, Taylor & Francis Journals, vol. 22(2), pages 113-126, January.
    12. Daniel Kapp & Marco Vega, 2014. "Real output costs of financial crises: A loss distribution approach," Cuadernos de Economía - Spanish Journal of Economics and Finance, Asociación Cuadernos de Economía, vol. 37(103), pages 13-28, Abril.
    13. Giuseppe Storti & Chao Wang, 2023. "Modeling uncertainty in financial tail risk: A forecast combination and weighted quantile approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1648-1663, November.
    14. Gonzales-Martínez, Rolando, 2008. "Medidas de Riesgo Financiero y una Aplicación a las Variaciones de Depósitos del Sistema Financiero Boliviano [Risk Measures and an Application to the Withdrawals of Deposits in the Bolivian Financ," MPRA Paper 14700, University Library of Munich, Germany.
    15. Mizgier, Kamil J. & Hora, Manpreet & Wagner, Stephan M. & Jüttner, Matthias P., 2015. "Managing operational disruptions through capital adequacy and process improvement," European Journal of Operational Research, Elsevier, vol. 245(1), pages 320-332.
    16. Salhi, Khaled & Deaconu, Madalina & Lejay, Antoine & Champagnat, Nicolas & Navet, Nicolas, 2016. "Regime switching model for financial data: Empirical risk analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 148-157.
    17. Bi, Guang & Giles, David E., 2009. "Modelling the financial risk associated with U.S. movie box office earnings," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(9), pages 2759-2766.
    18. Jian Zhou & Randy Anderson, 2012. "Extreme Risk Measures for International REIT Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 45(1), pages 152-170, June.
    19. Jittima Singvejsakul & Chukiat Chaiboonsri & Songsak Sriboonchitta, 2021. "The Optimization of Bayesian Extreme Value: Empirical Evidence for the Agricultural Commodities in the US," Economies, MDPI, vol. 9(1), pages 1-10, March.
    20. Heinz, Frigyes Ferdinand & Rusinova, Desislava, 2015. "An alternative view of exchange market pressure episodes in emerging Europe: an analysis using Extreme Value Theory (EVT)," Working Paper Series 1818, European Central Bank.

    More about this item

    Keywords

    Riesgo Operacional; Monte Carlo; distribución de pérdidas; Basilea II; VaR; OpVar; software;
    All these keywords.

    JEL classification:

    • A13 - General Economics and Teaching - - General Economics - - - Relation of Economics to Social Values
    • A30 - General Economics and Teaching - - Multisubject Collective Works - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inp:inpana:v:5:y:2013:i:1:p:39-48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.numericaiid.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.