IDEAS home Printed from https://ideas.repec.org/a/taf/apfiec/v22y2012i18p1553-1569.html
   My bibliography  Save this article

Measuring operational risk in financial institutions

Author

Listed:
  • S�verine Plunus
  • Georges Hübner
  • Jean-Philippe Peters

Abstract

The scarcity of internal loss databases tends to hinder the use of the advanced approaches for operational risk measurement (Advanced Measurement Approaches (AMA)) in financial institutions. As there is a greater variety in credit risk modelling, this article explores the applicability of a modified version of CreditRisk+ to operational loss data. Our adapted model, OpRisk+, works out very satisfying Values-at-Risk (VaR) at 95% level as compared with estimates drawn from sophisticated AMA models. OpRisk+ proves to be especially worthy in the case of small samples, where more complex methods cannot be applied. OpRisk+ could therefore be used to fit the body of the distribution of operational losses up to the 95%-percentile, while Extreme Value Theory (EVT), external databases or scenario analysis should be used beyond this quantile.

Suggested Citation

  • S�verine Plunus & Georges Hübner & Jean-Philippe Peters, 2012. "Measuring operational risk in financial institutions," Applied Financial Economics, Taylor & Francis Journals, vol. 22(18), pages 1553-1569, September.
  • Handle: RePEc:taf:apfiec:v:22:y:2012:i:18:p:1553-1569
    DOI: 10.1080/09603107.2012.667546
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/09603107.2012.667546
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/09603107.2012.667546?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Fontnouvelle, Patrick & Dejesus-Rueff, Virginia & Jordan, John S. & Rosengren, Eric S., 2006. "Capital and Risk: New Evidence on Implications of Large Operational Losses," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(7), pages 1819-1846, October.
    2. Patrick de Fontnouvelle & Eric Rosengren & John Jordan, 2007. "Implications of Alternative Operational Risk Modeling Techniques," NBER Chapters, in: The Risks of Financial Institutions, pages 475-505, National Bureau of Economic Research, Inc.
    3. Marco Moscadelli, 2004. "The modelling of operational risk: experience with the analysis of the data collected by the Basel Committee," Temi di discussione (Economic working papers) 517, Bank of Italy, Economic Research and International Relations Area.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Wei & Jianping Li & Xiaoqian Zhu, 2018. "Operational Loss Data Collection: A Literature Review," Annals of Data Science, Springer, vol. 5(3), pages 313-337, September.
    2. Valérie Chavez-Demoulin & Paul Embrechts & Marius Hofert, 2016. "An Extreme Value Approach for Modeling Operational Risk Losses Depending on Covariates," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 83(3), pages 735-776, September.
    3. Chernobai, Anna & Yildirim, Yildiray, 2008. "The dynamics of operational loss clustering," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2655-2666, December.
    4. Alina Mihaela Dima, 2009. "Operational Risk Assesement Tools for Quality Management in Banking Services," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 11(26), pages 364-372, June.
    5. Tursunalieva, Ainura & Silvapulle, Param, 2016. "Nonparametric estimation of operational value-at-risk (OpVaR)," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 194-201.
    6. Izhar, Hylmun, 2012. "Measuring Operational Risk Exposures in Islamic Banking: A Proposed Measurement Approach," Islamic Economic Studies, The Islamic Research and Training Institute (IRTI), vol. 20, pages 45-86.
    7. Chapelle, Ariane & Crama, Yves & Hübner, Georges & Peters, Jean-Philippe, 2008. "Practical methods for measuring and managing operational risk in the financial sector: A clinical study," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 1049-1061, June.
    8. Udo Milkau & Jürgen Bott, 2018. "Active Management of Operational Risk in the Regimes of the “Unknown”: What Can Machine Learning or Heuristics Deliver?," Risks, MDPI, vol. 6(2), pages 1-16, April.
    9. Barbu Teodora Cristina & Olteanu (Puiu) Ana Cornelia & Radu Alina Nicoleta, 2008. "The necessity of operational risk management and quantification," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 3(1), pages 661-667, May.
    10. Enrique Jiménez-Rodríguez & José Manuel Feria-Domínguez & Alonso Sebastián-Lacave, 2018. "Assessing the Health-Care Risk: The Clinical-VaR, a Key Indicator for Sound Management," IJERPH, MDPI, vol. 15(4), pages 1-17, March.
    11. Andreas Jobst, 2007. "Consistent Quantitative Operational Risk Measurement and Regulation: Challenges of Model Specification, Data Collection and Loss Reporting," IMF Working Papers 2007/254, International Monetary Fund.
    12. Andrea M. Buffa & Suleyman Basak, 2016. "A Theory of Operational Risk," 2016 Meeting Papers 352, Society for Economic Dynamics.
    13. Stephen Brown & William Goetzmann & Bing Liang & Christopher Schwarz, 2008. "Mandatory Disclosure and Operational Risk: Evidence from Hedge Fund Registration," Journal of Finance, American Finance Association, vol. 63(6), pages 2785-2815, December.
    14. Stefan Mittnik & Sandra Paterlini & Tina Yener, 2011. "Operational–risk Dependencies and the Determination of Risk Capital," Center for Economic Research (RECent) 070, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
    15. Embrechts, Paul & Puccetti, Giovanni & Rüschendorf, Ludger, 2013. "Model uncertainty and VaR aggregation," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 2750-2764.
    16. Steven Kou & Xianhua Peng, 2014. "On the Measurement of Economic Tail Risk," Papers 1401.4787, arXiv.org, revised Aug 2015.
    17. Azamat Abdymomunov & Filippo Curti & Atanas Mihov, 2020. "U.S. Banking Sector Operational Losses and the Macroeconomic Environment," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 52(1), pages 115-144, February.
    18. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    19. Pavel V. Shevchenko, 2010. "Implementing loss distribution approach for operational risk," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(3), pages 277-307, May.
    20. Ingo Walter, 2006. "Reputational Risk and Conflicts of Interest in Banking and Finance: The Evidence So Far," Working Papers 06-27, New York University, Leonard N. Stern School of Business, Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apfiec:v:22:y:2012:i:18:p:1553-1569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAFE20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.