IDEAS home Printed from https://ideas.repec.org/a/gam/jecomi/v9y2021i1p30-d510809.html
   My bibliography  Save this article

The Optimization of Bayesian Extreme Value: Empirical Evidence for the Agricultural Commodities in the US

Author

Listed:
  • Jittima Singvejsakul

    (Department of Agricultural Economy and Development, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand)

  • Chukiat Chaiboonsri

    (Faculty of Economics, Chiang Mai University, Chiang Mai 50200, Thailand)

  • Songsak Sriboonchitta

    (Faculty of Economics, Chiang Mai University, Chiang Mai 50200, Thailand
    Puey Ungphakorn Center of Excellence in Econometrics, Chiang Mai University, Chiang Mai 50200, Thailand)

Abstract

Bayesian extreme value analysis was used to forecast the optimal point in agricultural commodity futures prices in the United States for cocoa, coffee, corn, soybeans and wheat. Data were collected daily between 2000 and 2020. The estimation of extreme value can be empirically interpreted as representing crises or unusual time series trends, while the extreme optimal point is useful for investors and agriculturists to make decisions and better understand agricultural commodities future prices warning levels. Results from the Non-stationary Extreme Value Analysis (NEVA) software package using Bayesian inference and the Newton-optimal methods provided optimal interval values. These indicated extreme maximum points of future prices to inform investors and agriculturists to sell the contract and product before the commodity prices dropped to the next local minimum values. Thus, agriculturists can use this information as an advanced warming of alarming points of agricultural commodity prices to predict the efficient quantity of their agricultural product to sell, with better ways to manage this risk.

Suggested Citation

  • Jittima Singvejsakul & Chukiat Chaiboonsri & Songsak Sriboonchitta, 2021. "The Optimization of Bayesian Extreme Value: Empirical Evidence for the Agricultural Commodities in the US," Economies, MDPI, vol. 9(1), pages 1-10, March.
  • Handle: RePEc:gam:jecomi:v:9:y:2021:i:1:p:30-:d:510809
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7099/9/1/30/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7099/9/1/30/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Linyin Cheng & Amir AghaKouchak & Eric Gilleland & Richard Katz, 2014. "Non-stationary extreme value analysis in a changing climate," Climatic Change, Springer, vol. 127(2), pages 353-369, November.
    2. Torun Fretheim & Glenn Kristiansen, 2015. "Commodity market risk from 1995 to 2013: an extreme value theory approach," Applied Economics, Taylor & Francis Journals, vol. 47(26), pages 2768-2782, June.
    3. Maarten van Oordt & Philip Stork & Casper de Vries, 2013. "On agricultural commodities' extreme price risk," DNB Working Papers 403, Netherlands Central Bank, Research Department.
    4. Park, Eunchun & Maples, Josh, 2018. "Extreme Events and Serial Dependence in Commodity Prices," 2018 Annual Meeting, August 5-7, Washington, D.C. 274469, Agricultural and Applied Economics Association.
    5. Manfred Gilli & Evis këllezi, 2006. "An Application of Extreme Value Theory for Measuring Financial Risk," Computational Economics, Springer;Society for Computational Economics, vol. 27(2), pages 207-228, May.
    6. Polyak, B.T., 2007. "Newton's method and its use in optimization," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1086-1096, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Yixing & Ramsey, Austin F., 2022. "Extreme Correlation Between Daily Basis Returns of Local Corn Markets in North Carolina," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322373, Agricultural and Applied Economics Association.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    2. Ivorra, Benjamin & Mohammadi, Bijan & Manuel Ramos, Angel, 2015. "A multi-layer line search method to improve the initialization of optimization algorithms," European Journal of Operational Research, Elsevier, vol. 247(3), pages 711-720.
    3. Carlin C. F. Chu & Simon S. W. Li, 2024. "A multiobjective optimization approach for threshold determination in extreme value analysis for financial time series," Computational Management Science, Springer, vol. 21(1), pages 1-14, June.
    4. Amira Dridi & Mohamed El Ghourabi & Mohamed Limam, 2012. "On monitoring financial stress index with extreme value theory," Quantitative Finance, Taylor & Francis Journals, vol. 12(3), pages 329-339, March.
    5. Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
    6. M. Naresh Kumar & V. Sree Hari Rao, 2015. "A New Methodology for Estimating Internal Credit Risk and Bankruptcy Prediction under Basel II Regime," Computational Economics, Springer;Society for Computational Economics, vol. 46(1), pages 83-102, June.
    7. Hongxiang Yan & Hamid Moradkhani, 2016. "Toward more robust extreme flood prediction by Bayesian hierarchical and multimodeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 203-225, March.
    8. Xia Yang & Jing Zhang & Wei-Xin Ren, 2018. "Threshold selection for extreme value estimation of vehicle load effect on bridges," International Journal of Distributed Sensor Networks, , vol. 14(2), pages 15501477187, February.
    9. Robert L. Ceres & Chris E. Forest & Klaus Keller, 2017. "Understanding the detectability of potential changes to the 100-year peak storm surge," Climatic Change, Springer, vol. 145(1), pages 221-235, November.
    10. Xin Chen & Zhangming Shan & Decai Tang & Biao Zhou & Valentina Boamah, 2023. "Interest rate risk of Chinese commercial banks based on the GARCH-EVT model," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-11, December.
    11. Chao Wang & Richard Gerlach, 2019. "Semi-parametric Realized Nonlinear Conditional Autoregressive Expectile and Expected Shortfall," Papers 1906.09961, arXiv.org.
    12. Jian Zhou, 2012. "Extreme risk measures for REITs: a comparison among alternative methods," Applied Financial Economics, Taylor & Francis Journals, vol. 22(2), pages 113-126, January.
    13. Zheng, Yixing & Ramsey, Austin F., 2022. "Extreme Correlation Between Daily Basis Returns of Local Corn Markets in North Carolina," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322373, Agricultural and Applied Economics Association.
    14. Giuseppe Storti & Chao Wang, 2023. "Modeling uncertainty in financial tail risk: A forecast combination and weighted quantile approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1648-1663, November.
    15. Gonzales-Martínez, Rolando, 2008. "Medidas de Riesgo Financiero y una Aplicación a las Variaciones de Depósitos del Sistema Financiero Boliviano [Risk Measures and an Application to the Withdrawals of Deposits in the Bolivian Financ," MPRA Paper 14700, University Library of Munich, Germany.
    16. Zhi-Fu Mi & Yi-Ming Wei & Bao-Jun Tang & Rong-Gang Cong & Hao Yu & Hong Cao & Dabo Guan, 2017. "Risk assessment of oil price from static and dynamic modelling approaches," Applied Economics, Taylor & Francis Journals, vol. 49(9), pages 929-939, February.
    17. Mizgier, Kamil J. & Hora, Manpreet & Wagner, Stephan M. & Jüttner, Matthias P., 2015. "Managing operational disruptions through capital adequacy and process improvement," European Journal of Operational Research, Elsevier, vol. 245(1), pages 320-332.
    18. Salhi, Khaled & Deaconu, Madalina & Lejay, Antoine & Champagnat, Nicolas & Navet, Nicolas, 2016. "Regime switching model for financial data: Empirical risk analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 148-157.
    19. Mojtaba Sadegh & Amir AghaKouchak & Alejandro Flores & Iman Mallakpour & Mohammad Reza Nikoo, 2019. "A Multi-Model Nonstationary Rainfall-Runoff Modeling Framework: Analysis and Toolbox," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3011-3024, July.
    20. Bi, Guang & Giles, David E., 2009. "Modelling the financial risk associated with U.S. movie box office earnings," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(9), pages 2759-2766.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecomi:v:9:y:2021:i:1:p:30-:d:510809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.