IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v50y2016i2p390-407.html
   My bibliography  Save this article

Uncertainty in Fleet Renewal: A Case from Maritime Transportation

Author

Listed:
  • Giovanni Pantuso

    (Technical University of Denmark, DK-4000 Roskilde, Denmark; and Norwegian University of Science and Technology, NO-7491 Trondheim, Norway)

  • Kjetil Fagerholt

    (Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; and Norwegian Marine Technology Research Institute, NO-7450 Trondheim, Norway)

  • Stein W. Wallace

    (Norwegian School of Economics, NO-5045 Bergen, Norway)

Abstract

This paper addresses the fleet renewal problem and particularly the treatment of uncertainty in the maritime case. A stochastic programming model for the maritime fleet renewal problem is presented. The main contribution is that of assessing whether or not better decisions can be achieved by using stochastic programming rather than employing a deterministic model and using average data. Elements increasing the relevance of uncertainty are also investigated. Tests performed on the case of Wallenius Wilhelmsen Logistics, a major liner shipping company, show that solutions to the model we present perform noticeably better than solutions obtained using average values.

Suggested Citation

  • Giovanni Pantuso & Kjetil Fagerholt & Stein W. Wallace, 2016. "Uncertainty in Fleet Renewal: A Case from Maritime Transportation," Transportation Science, INFORMS, vol. 50(2), pages 390-407, May.
  • Handle: RePEc:inm:ortrsc:v:50:y:2016:i:2:p:390-407
    DOI: 10.1287/trsc.2014.0566
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.2014.0566
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2014.0566?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Crary, Michael & Nozick, L. K. & Whitaker, L. R., 2002. "Sizing the US destroyer fleet," European Journal of Operational Research, Elsevier, vol. 136(3), pages 680-695, February.
    2. Sampath Rajagopalan & Medini R. Singh & Thomas E. Morton, 1998. "Capacity Expansion and Replacement in Growing Markets with Uncertain Technological Breakthroughs," Management Science, INFORMS, vol. 44(1), pages 12-30, January.
    3. Manolis G. Kavussanos & Ilias D. Visvikis, 2006. "Shipping freight derivatives: a survey of recent evidence," Maritime Policy & Management, Taylor & Francis Journals, vol. 33(3), pages 233-255, July.
    4. Halvorsen-Weare, Elin E. & Fagerholt, Kjetil & Nonås, Lars Magne & Asbjørnslett, Bjørn Egil, 2012. "Optimal fleet composition and periodic routing of offshore supply vessels," European Journal of Operational Research, Elsevier, vol. 223(2), pages 508-517.
    5. Qiang Meng & Tingsong Wang, 2010. "A chance constrained programming model for short-term liner ship fleet planning problems," Maritime Policy & Management, Taylor & Francis Journals, vol. 37(4), pages 329-346, July.
    6. Hanif D. Sherali & Lawrence W. Maguire, 2000. "Determining Rail Fleet Sizes for Shipping Automobiles," Interfaces, INFORMS, vol. 30(6), pages 80-90, December.
    7. Pantuso, Giovanni & Fagerholt, Kjetil & Hvattum, Lars Magnus, 2014. "A survey on maritime fleet size and mix problems," European Journal of Operational Research, Elsevier, vol. 235(2), pages 341-349.
    8. Hanan Luss, 1982. "Operations Research and Capacity Expansion Problems: A Survey," Operations Research, INFORMS, vol. 30(5), pages 907-947, October.
    9. Chand, Suresh & McClurg, Tim & Ward, Jim, 2000. "A model for parallel machine replacement with capacity expansion," European Journal of Operational Research, Elsevier, vol. 121(3), pages 519-531, March.
    10. Godwin, T. & Gopalan, Ram & Narendran, T.T., 2008. "Tactical locomotive fleet sizing for freight train operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(3), pages 440-454, May.
    11. Sol M. Rocklin & Arik Kashper & George C. Varvaloucas, 1984. "Capacity Expansion/Contraction of a Facility with Demand Augmentation Dynamics," Operations Research, INFORMS, vol. 32(1), pages 133-147, February.
    12. Meng, Qiang & Wang, Tingsong, 2011. "A scenario-based dynamic programming model for multi-period liner ship fleet planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(4), pages 401-413, July.
    13. Philip C. Jones & James L. Zydiak & Wallace J. Hopp, 1991. "Parallel machine replacement," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(3), pages 351-365, June.
    14. C. O. Fong & V. Srinivasan, 1986. "The Multiregion Dynamic Capacity Expansion Problem: An Improved Heuristic," Management Science, INFORMS, vol. 32(9), pages 1140-1152, September.
    15. Shanling Li & Devanath Tirupati, 1994. "Dynamic Capacity Expansion Problem with Multiple Products: Technology Selection and Timing of Capacity Additions," Operations Research, INFORMS, vol. 42(5), pages 958-976, October.
    16. Roar Adland & Steen Koekebakker, 2007. "Ship Valuation Using Cross-Sectional Sales Data: A Multivariate Non-Parametric Approach," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 9(2), pages 105-118, June.
    17. S. Rajagopalan & Andreas C. Soteriou, 1994. "Capacity Acquisition and Disposal with Discrete Facility Sizes," Management Science, INFORMS, vol. 40(7), pages 903-917, July.
    18. Peiling Wu & Joseph C. Hartman & George R. Wilson, 2005. "An Integrated Model and Solution Approach for Fleet Sizing with Heterogeneous Assets," Transportation Science, INFORMS, vol. 39(1), pages 87-103, February.
    19. Octavio Richetta & Richard C. Larson, 1997. "Modeling the Increased Complexity of New York City's Refuse Marine Transport System," Transportation Science, INFORMS, vol. 31(3), pages 272-293, August.
    20. Dan Avramovich & Thomas M. Cook & Gary D. Langston & Frank Sutherland, 1982. "A Decision Support System for Fleet Management: A Linear Programming Approach," Interfaces, INFORMS, vol. 12(3), pages 1-9, June.
    21. Diana, Marco & Dessouky, Maged M. & Xia, Nan, 2006. "A model for the fleet sizing of demand responsive transportation services with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 40(8), pages 651-666, September.
    22. Ovidiu Listes & Rommert Dekker, 2005. "A Scenario Aggregation–Based Approach for Determining a Robust Airline Fleet Composition for Dynamic Capacity Allocation," Transportation Science, INFORMS, vol. 39(3), pages 367-382, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stålhane, Magnus & Halvorsen-Weare, Elin E. & Nonås, Lars Magne & Pantuso, Giovanni, 2019. "Optimizing vessel fleet size and mix to support maintenance operations at offshore wind farms," European Journal of Operational Research, Elsevier, vol. 276(2), pages 495-509.
    2. Arslan, Ayşe N. & Papageorgiou, Dimitri J., 2017. "Bulk ship fleet renewal and deployment under uncertainty: A multi-stage stochastic programming approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 69-96.
    3. Skålnes, Jørgen & Fagerholt, Kjetil & Pantuso, Giovanni & Wang, Xin, 2020. "Risk control in maritime shipping investments," Omega, Elsevier, vol. 96(C).
    4. Wang, Yadong & Meng, Qiang, 2021. "Optimizing freight rate of spot market containers with uncertainties in shipping demand and available ship capacity," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 314-332.
    5. Wang, Tingsong & Tian, Xuecheng & Wang, Yadong, 2020. "Container slot allocation and dynamic pricing of time-sensitive cargoes considering port congestion and uncertain demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    6. Orestis Schinas & Niklas Bergmann, 2021. "The Short-Term Cost of Greening the Global Fleet," Sustainability, MDPI, vol. 13(16), pages 1-32, August.
    7. Jone R. Hansen & Kjetil Fagerholt & Frank Meisel & Jørgen G. Rakke, 2019. "Planning interrelated voyages with separation requirements in roll-on roll-off shipping," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 633-659, December.
    8. Geursen, Izaak L. & Santos, Bruno F. & Yorke-Smith, Neil, 2023. "Fleet planning under demand and fuel price uncertainty using actor–critic reinforcement learning," Journal of Air Transport Management, Elsevier, vol. 109(C).
    9. Gu, Yewen & Wallace, Stein W. & Wang, Xin, 2018. "Can an Emission Trading Scheme really reduce CO2 emissions in the short term? Evidence from a maritime fleet composition and deployment model," Discussion Papers 2018/10, Norwegian School of Economics, Department of Business and Management Science.
    10. Wang, Xin & Fagerholt, Kjetil & Wallace, Stein W., 2018. "Planning for charters: A stochastic maritime fleet composition and deployment problem," Omega, Elsevier, vol. 79(C), pages 54-66.
    11. Winkelmann, Jonas & Spinler, Stefan & Neukirchen, Thomas, 2024. "Green transport fleet renewal using approximate dynamic programming: A case study in German heavy-duty road transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    12. Qinghe Sun & Li Chen & Mabel C. Chou & Qiang Meng, 2023. "Mitigating the financial risk behind emission cap compliance: A case in maritime transportation," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 283-300, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pantuso, Giovanni & Fagerholt, Kjetil & Hvattum, Lars Magnus, 2014. "A survey on maritime fleet size and mix problems," European Journal of Operational Research, Elsevier, vol. 235(2), pages 341-349.
    2. Martínez-Costa, Carme & Mas-Machuca, Marta & Benedito, Ernest & Corominas, Albert, 2014. "A review of mathematical programming models for strategic capacity planning in manufacturing," International Journal of Production Economics, Elsevier, vol. 153(C), pages 66-85.
    3. Poretus, Evan L. & Angelus, Alexander, 2000. "Simultaneous Production and Capacity Management under Stochastic Demand for Perishable Goods," Research Papers 1419r, Stanford University, Graduate School of Business.
    4. Metin Çakanyıldırım & Robin O. Roundy & Samuel C. Wood, 2004. "Optimal machine capacity expansions with nested limitations under stochastic demand," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(2), pages 217-241, March.
    5. Mørch, Ove & Fagerholt, Kjetil & Pantuso, Giovanni & Rakke, Jørgen, 2017. "Maximizing the rate of return on the capital employed in shipping capacity renewal," Omega, Elsevier, vol. 67(C), pages 42-53.
    6. Vernon Ning Hsu, 2002. "Dynamic Capacity Expansion Problem with Deferred Expansion and Age-Dependent Shortage Cost," Manufacturing & Service Operations Management, INFORMS, vol. 4(1), pages 44-54, June.
    7. Bakkehaug, Rikard & Eidem, Eirik Stamsø & Fagerholt, Kjetil & Hvattum, Lars Magnus, 2014. "A stochastic programming formulation for strategic fleet renewal in shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 60-76.
    8. Arslan, Ayşe N. & Papageorgiou, Dimitri J., 2017. "Bulk ship fleet renewal and deployment under uncertainty: A multi-stage stochastic programming approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 69-96.
    9. Alexandar Angelus & Evan L. Porteus, 2002. "Simultaneous Capacity and Production Management of Short-Life-Cycle, Produce-to-Stock Goods Under Stochastic Demand," Management Science, INFORMS, vol. 48(3), pages 399-413, March.
    10. Hongmin Li & Stephen C. Graves & Woonghee Tim Huh, 2014. "Optimal Capacity Conversion for Product Transitions Under High Service Requirements," Manufacturing & Service Operations Management, INFORMS, vol. 16(1), pages 46-60, February.
    11. Zhouchun Huang & Qipeng P. Zheng & Andrew L. Liu, 2022. "A Nested Cross Decomposition Algorithm for Power System Capacity Expansion with Multiscale Uncertainties," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 1919-1939, July.
    12. Qiang Meng & Tingsong Wang & Shuaian Wang, 2015. "Multi-period liner ship fleet planning with dependent uncertain container shipment demand," Maritime Policy & Management, Taylor & Francis Journals, vol. 42(1), pages 43-67, January.
    13. Van-Anh Truong & Robin O. Roundy, 2011. "Multidimensional Approximation Algorithms for Capacity-Expansion Problems," Operations Research, INFORMS, vol. 59(2), pages 313-327, April.
    14. Julka, Nirupam & Baines, Tim & Tjahjono, Benny & Lendermann, Peter & Vitanov, Val, 2007. "A review of multi-factor capacity expansion models for manufacturing plants: Searching for a holistic decision aid," International Journal of Production Economics, Elsevier, vol. 106(2), pages 607-621, April.
    15. Shields, Brett A. & Seif, Javad & Yu, Andrew Junfang, 2019. "Parallel machine replacement with shipping decisions," International Journal of Production Economics, Elsevier, vol. 218(C), pages 62-71.
    16. Chand, Suresh & McClurg, Tim & Ward, Jim, 2000. "A model for parallel machine replacement with capacity expansion," European Journal of Operational Research, Elsevier, vol. 121(3), pages 519-531, March.
    17. Lijian Lu & Xiaoming Yan, 2016. "Capacity investment decisions under risk aversion," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(3), pages 218-235, April.
    18. Georgiadis, Patroklos & Athanasiou, Efstratios, 2013. "Flexible long-term capacity planning in closed-loop supply chains with remanufacturing," European Journal of Operational Research, Elsevier, vol. 225(1), pages 44-58.
    19. Rajagopalan, S. & Yu, Hung-Liang, 2001. "Capacity planning with congestion effects," European Journal of Operational Research, Elsevier, vol. 134(2), pages 365-377, October.
    20. Jan A. Van Mieghem, 2003. "Commissioned Paper: Capacity Management, Investment, and Hedging: Review and Recent Developments," Manufacturing & Service Operations Management, INFORMS, vol. 5(4), pages 269-302, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:50:y:2016:i:2:p:390-407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.