IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v51y2004i2p217-241.html
   My bibliography  Save this article

Optimal machine capacity expansions with nested limitations under stochastic demand

Author

Listed:
  • Metin Çakanyıldırım
  • Robin O. Roundy
  • Samuel C. Wood

Abstract

This paper studies capacity expansions for a production facility that faces uncertain customer demand for a single product family. The capacity of the facility is modeled in three tiers, as follows. The first tier consists of a set of upper bounds on production that correspond to different resource types (e.g., machine types, categories of manpower, etc.). These upper bounds are augmented in increments of fixed size (e.g., by purchasing machines of standard types). There is a second‐tier resource that constrains the first‐tier bounds (e.g., clean room floor space). The third‐tier resource bounds the availability of the second‐tier resource (e.g., the total floor space enclosed by the building, land, etc.). The second and third‐tier resources are expanded at various times in various amounts. The cost of capacity expansion at each tier has both fixed and proportional elements. The lost sales cost is used as a measure for the level of customer service. The paper presents a polynomial time algorithm (FIFEX) to minimize the total cost by computing optimal expansion times and amounts for all three types of capacity jointly. It accommodates positive lead times for each type. Demand is assumed to be nondecreasing in a “weak” sense. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2004.

Suggested Citation

  • Metin Çakanyıldırım & Robin O. Roundy & Samuel C. Wood, 2004. "Optimal machine capacity expansions with nested limitations under stochastic demand," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(2), pages 217-241, March.
  • Handle: RePEc:wly:navres:v:51:y:2004:i:2:p:217-241
    DOI: 10.1002/nav.10112
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.10112
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.10112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Swaminathan, Jayashankar M., 2000. "Tool capacity planning for semiconductor fabrication facilities under demand uncertainty," European Journal of Operational Research, Elsevier, vol. 120(3), pages 545-558, February.
    2. Sampath Rajagopalan & Medini R. Singh & Thomas E. Morton, 1998. "Capacity Expansion and Replacement in Growing Markets with Uncertain Technological Breakthroughs," Management Science, INFORMS, vol. 44(1), pages 12-30, January.
    3. Hanan Luss, 1982. "Operations Research and Capacity Expansion Problems: A Survey," Operations Research, INFORMS, vol. 30(5), pages 907-947, October.
    4. Bashyam, T. C. A., 1996. "Competitive capacity expansion under demand uncertainty," European Journal of Operational Research, Elsevier, vol. 95(1), pages 89-114, November.
    5. Sol M. Rocklin & Arik Kashper & George C. Varvaloucas, 1984. "Capacity Expansion/Contraction of a Facility with Demand Augmentation Dynamics," Operations Research, INFORMS, vol. 32(1), pages 133-147, February.
    6. Dixit, Avinash, 1997. "Investment and Employment Dynamics in the Short Run and the Long Run," Oxford Economic Papers, Oxford University Press, vol. 49(1), pages 1-20, January.
    7. James C. Bean & Julia L. Higle & Robert L. Smith, 1992. "Capacity Expansion Under Stochastic Demands," Operations Research, INFORMS, vol. 40(3-supplem), pages 210-216, June.
    8. A. W. Neebe & M. R. Rao, 1986. "Sequencing Capacity Expansion Projects in Continuous Time," Management Science, INFORMS, vol. 32(11), pages 1467-1479, November.
    9. S. Rajagopalan, 1998. "Capacity Expansion and Equipment Replacement: A Unified Approach," Operations Research, INFORMS, vol. 46(6), pages 846-857, December.
    10. Chand, Suresh & McClurg, Tim & Ward, Jim, 2000. "A model for parallel machine replacement with capacity expansion," European Journal of Operational Research, Elsevier, vol. 121(3), pages 519-531, March.
    11. Joseph C. Hartman, 2000. "The parallel replacement problem with demand and capital budgeting constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(1), pages 40-56, February.
    12. Gary D. Eppen & R. Kipp Martin & Linus Schrage, 1989. "OR Practice—A Scenario Approach to Capacity Planning," Operations Research, INFORMS, vol. 37(4), pages 517-527, August.
    13. Shanling Li & Devanath Tirupati, 1994. "Dynamic Capacity Expansion Problem with Multiple Products: Technology Selection and Timing of Capacity Additions," Operations Research, INFORMS, vol. 42(5), pages 958-976, October.
    14. Randall S. Hiller & Jeremy F. Shapiro, 1986. "Optimal Capacity Expansion Planning When There are Learning Effects," Management Science, INFORMS, vol. 32(9), pages 1153-1163, September.
    15. John R. Birge, 2000. "Option Methods for Incorporating Risk into Linear Capacity Planning Models," Manufacturing & Service Operations Management, INFORMS, vol. 2(1), pages 19-31, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rahul R. Marathe & Sarah M. Ryan, 2009. "Capacity expansion under a service‐level constraint for uncertain demand with lead times," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(3), pages 250-263, April.
    2. Van-Anh Truong & Robin O. Roundy, 2011. "Multidimensional Approximation Algorithms for Capacity-Expansion Problems," Operations Research, INFORMS, vol. 59(2), pages 313-327, April.
    3. Woonghee Tim Huh & Robin O. Roundy & Metin Çakanyildirim, 2006. "A general strategic capacity planning model under demand uncertainty," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(2), pages 137-150, March.
    4. Sergio Chayet & Wallace J. Hopp, 2008. "Risk‐sensitive sizing of responsive facilities," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(3), pages 218-233, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan A. Van Mieghem, 2003. "Commissioned Paper: Capacity Management, Investment, and Hedging: Review and Recent Developments," Manufacturing & Service Operations Management, INFORMS, vol. 5(4), pages 269-302, July.
    2. Van-Anh Truong & Robin O. Roundy, 2011. "Multidimensional Approximation Algorithms for Capacity-Expansion Problems," Operations Research, INFORMS, vol. 59(2), pages 313-327, April.
    3. Poretus, Evan L. & Angelus, Alexander, 2000. "Simultaneous Production and Capacity Management under Stochastic Demand for Perishable Goods," Research Papers 1419r, Stanford University, Graduate School of Business.
    4. Porteus, Evan L. & Angelus, Alexandar & Wood, Samuel C., 2000. "Optimal Sizing and Timing of Modular Capacity Expansions," Research Papers 1479r2, Stanford University, Graduate School of Business.
    5. Hongmin Li & Stephen C. Graves & Woonghee Tim Huh, 2014. "Optimal Capacity Conversion for Product Transitions Under High Service Requirements," Manufacturing & Service Operations Management, INFORMS, vol. 16(1), pages 46-60, February.
    6. Kai Huang & Shabbir Ahmed, 2009. "The Value of Multistage Stochastic Programming in Capacity Planning Under Uncertainty," Operations Research, INFORMS, vol. 57(4), pages 893-904, August.
    7. Martínez-Costa, Carme & Mas-Machuca, Marta & Benedito, Ernest & Corominas, Albert, 2014. "A review of mathematical programming models for strategic capacity planning in manufacturing," International Journal of Production Economics, Elsevier, vol. 153(C), pages 66-85.
    8. Vernon Ning Hsu, 2002. "Dynamic Capacity Expansion Problem with Deferred Expansion and Age-Dependent Shortage Cost," Manufacturing & Service Operations Management, INFORMS, vol. 4(1), pages 44-54, June.
    9. Paul R. Kleindorfer & Andrei Neboian & Alain Roset & Stefan Spinler, 2012. "Fleet Renewal with Electric Vehicles at La Poste," Interfaces, INFORMS, vol. 42(5), pages 465-477, October.
    10. Zhouchun Huang & Qipeng P. Zheng & Andrew L. Liu, 2022. "A Nested Cross Decomposition Algorithm for Power System Capacity Expansion with Multiscale Uncertainties," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 1919-1939, July.
    11. Julka, Nirupam & Baines, Tim & Tjahjono, Benny & Lendermann, Peter & Vitanov, Val, 2007. "A review of multi-factor capacity expansion models for manufacturing plants: Searching for a holistic decision aid," International Journal of Production Economics, Elsevier, vol. 106(2), pages 607-621, April.
    12. Shabbir Ahmed & Nikolaos V. Sahinidis, 2003. "An Approximation Scheme for Stochastic Integer Programs Arising in Capacity Expansion," Operations Research, INFORMS, vol. 51(3), pages 461-471, June.
    13. Georgiadis, Patroklos & Athanasiou, Efstratios, 2013. "Flexible long-term capacity planning in closed-loop supply chains with remanufacturing," European Journal of Operational Research, Elsevier, vol. 225(1), pages 44-58.
    14. Giovanni Pantuso & Kjetil Fagerholt & Stein W. Wallace, 2016. "Uncertainty in Fleet Renewal: A Case from Maritime Transportation," Transportation Science, INFORMS, vol. 50(2), pages 390-407, May.
    15. Lijian Lu & Xiaoming Yan, 2016. "Capacity investment decisions under risk aversion," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(3), pages 218-235, April.
    16. Xiuli Chao & Hong Chen & Shaohui Zheng, 2009. "Dynamic Capacity Expansion for a Service Firm with Capacity Deterioration and Supply Uncertainty," Operations Research, INFORMS, vol. 57(1), pages 82-93, February.
    17. Wenbin Wang & Mark E. Ferguson & Shanshan Hu & Gilvan C. Souza, 2013. "Dynamic Capacity Investment with Two Competing Technologies," Manufacturing & Service Operations Management, INFORMS, vol. 15(4), pages 616-629, October.
    18. Yang, Qing & Zhang, Lei & Zou, Shaohui & Zhang, Jinsuo, 2020. "Intertemporal optimization of the coal production capacity in China in terms of uncertain demand, economy, environment, and energy security," Energy Policy, Elsevier, vol. 139(C).
    19. Harrison, J. Michael & Van Mieghem, Jan A., 1999. "Multi-resource investment strategies: Operational hedging under demand uncertainty," European Journal of Operational Research, Elsevier, vol. 113(1), pages 17-29, February.
    20. Alexandar Angelus & Evan L. Porteus, 2002. "Simultaneous Capacity and Production Management of Short-Life-Cycle, Produce-to-Stock Goods Under Stochastic Demand," Management Science, INFORMS, vol. 48(3), pages 399-413, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:51:y:2004:i:2:p:217-241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.