IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v48y2014i3p413-424.html
   My bibliography  Save this article

Dynamic ng-Path Relaxation for the Delivery Man Problem

Author

Listed:
  • Roberto Roberti

    (Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, Bologna 40136, Italy)

  • Aristide Mingozzi

    (Department of Mathematics, University of Bologna, Cesena 47521, Italy)

Abstract

The ng-path relaxation was introduced by Baldacci, Mingozzi, and Roberti [Baldacci R, Mingozzi A, Roberti R (2011) New route relaxation and pricing strategies for the vehicle routing problem. Oper. Res. 59(5):1269--1283] for computing tight lower bounds to vehicle routing problems by solving a relaxation of the set-partitioning formulation, where routes are not necessarily elementary and can contain predefined subtours. The strength of the achieved lower bounds depends on the subtours that routes can perform. In this paper, we introduce a new general bounding procedure called dynamic ng-path relaxation that enhances the one of Baldacci, Mingozzi, and Roberti (2011) by iteratively redefining the subtours that routes can perform. We apply the bounding procedure on the well-known delivery man problem , which is a generalization of the traveling salesman problem where costs for traversing arcs depend on their positions along the tour. The proposed bounding procedure is based on column generation and computes a sequence of nondecreasing lower bounds to the problem. The final lower bound is used to solve the problem to optimality with a simple dynamic programming recursion. An extensive computational analysis on benchmark instances from the TSPLIB shows that the new bounding procedure yields better lower bounds than those provided by the method of Baldacci, Mingozzi, and Roberti (2011). Furthermore, the proposed exact method outperforms other exact methods recently presented in the literature and is able to close five open instances with up to 150 vertices.

Suggested Citation

  • Roberto Roberti & Aristide Mingozzi, 2014. "Dynamic ng-Path Relaxation for the Delivery Man Problem," Transportation Science, INFORMS, vol. 48(3), pages 413-424, August.
  • Handle: RePEc:inm:ortrsc:v:48:y:2014:i:3:p:413-424
    DOI: 10.1287/trsc.2013.0474
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.2013.0474
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2013.0474?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gouveia, Luis & Vo[ss], Stefan, 1995. "A classification of formulations for the (time-dependent) traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 83(1), pages 69-82, May.
    2. Roberto Baldacci & Aristide Mingozzi & Roberto Roberti, 2011. "New Route Relaxation and Pricing Strategies for the Vehicle Routing Problem," Operations Research, INFORMS, vol. 59(5), pages 1269-1283, October.
    3. Silva, Marcos Melo & Subramanian, Anand & Vidal, Thibaut & Ochi, Luiz Satoru, 2012. "A simple and effective metaheuristic for the Minimum Latency Problem," European Journal of Operational Research, Elsevier, vol. 221(3), pages 513-520.
    4. Russ J. Vander Wiel & Nikolaos V. Sahinidis, 1996. "An exact solution approach for the time‐dependent traveling‐salesman problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(6), pages 797-820, September.
    5. Ann Melissa Campbell & Dieter Vandenbussche & William Hermann, 2008. "Routing for Relief Efforts," Transportation Science, INFORMS, vol. 42(2), pages 127-145, May.
    6. Roberto Baldacci & Aristide Mingozzi & Roberto Roberti, 2012. "New State-Space Relaxations for Solving the Traveling Salesman Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 356-371, August.
    7. Matteo Fischetti & Gilbert Laporte & Silvano Martello, 1993. "The Delivery Man Problem and Cumulative Matroids," Operations Research, INFORMS, vol. 41(6), pages 1055-1064, December.
    8. Jean-Claude Picard & Maurice Queyranne, 1978. "The Time-Dependent Traveling Salesman Problem and Its Application to the Tardiness Problem in One-Machine Scheduling," Operations Research, INFORMS, vol. 26(1), pages 86-110, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Mikula & Miroslav Kulich, 2022. "Solving the traveling delivery person problem with limited computational time," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(4), pages 1451-1481, December.
    2. Hoogendoorn, Y.N. & Dalmeijer, K., 2021. "Resource-robust valid inequalities for set covering and set partitioning models," Econometric Institute Research Papers EI 2020-08, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Kevin Dalmeijer & Guy Desaulniers, 2021. "Addressing Orientation Symmetry in the Time Window Assignment Vehicle Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 495-510, May.
    4. Morais, Rafael & Bulhões, Teobaldo & Subramanian, Anand, 2024. "Exact and heuristic algorithms for minimizing the makespan on a single machine scheduling problem with sequence-dependent setup times and release dates," European Journal of Operational Research, Elsevier, vol. 315(2), pages 442-453.
    5. Ruslan Sadykov & Eduardo Uchoa & Artur Pessoa, 2021. "A Bucket Graph–Based Labeling Algorithm with Application to Vehicle Routing," Transportation Science, INFORMS, vol. 55(1), pages 4-28, 1-2.
    6. Yin, Yunqiang & Li, Dongwei & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Wang, Sutong, 2023. "A branch-and-price-and-cut algorithm for the truck-based drone delivery routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1125-1144.
    7. Nicola Bianchessi & Stefan Irnich & Christian Tilk, 2020. "A Branch-Price-and-Cut Algorithm for the Capacitated Multiple Vehicle Traveling Purchaser Problem with Unitary Demand," Working Papers 2003, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    8. Ann-Kathrin Rothenbächer, 2019. "Branch-and-Price-and-Cut for the Periodic Vehicle Routing Problem with Flexible Schedule Structures," Transportation Science, INFORMS, vol. 53(3), pages 850-866, May.
    9. Christian Tilk, 2016. "Branch-and-Price-and-Cut for the Vehicle Routing and Truck Driver Scheduling Problem," Working Papers 1616, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    10. Albert Einstein Fernandes Muritiba & Tibérius O. Bonates & Stênio Oliveira Da Silva & Manuel Iori, 2021. "Branch-and-Cut and Iterated Local Search for the Weighted k -Traveling Repairman Problem: An Application to the Maintenance of Speed Cameras," Transportation Science, INFORMS, vol. 55(1), pages 139-159, 1-2.
    11. Caio Marinho Damião & João Marcos Pereira Silva & Eduardo Uchoa, 2023. "A branch-cut-and-price algorithm for the cumulative capacitated vehicle routing problem," 4OR, Springer, vol. 21(1), pages 47-71, March.
    12. Yin, Yunqiang & Yang, Yongjian & Yu, Yugang & Wang, Dujuan & Cheng, T.C.E., 2023. "Robust vehicle routing with drones under uncertain demands and truck travel times in humanitarian logistics," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    13. Vu, Duc Minh & Hewitt, Mike & Vu, Duc D., 2022. "Solving the time dependent minimum tour duration and delivery man problems with dynamic discretization discovery," European Journal of Operational Research, Elsevier, vol. 302(3), pages 831-846.
    14. Ajam, Meraj & Akbari, Vahid & Salman, F. Sibel, 2022. "Routing multiple work teams to minimize latency in post-disaster road network restoration," European Journal of Operational Research, Elsevier, vol. 300(1), pages 237-254.
    15. Yang, Yu & Yan, Chiwei & Cao, Yufeng & Roberti, Roberto, 2023. "Planning robust drone-truck delivery routes under road traffic uncertainty," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1145-1160.
    16. Asvin Goel & Stefan Irnich, 2017. "An Exact Method for Vehicle Routing and Truck Driver Scheduling Problems," Transportation Science, INFORMS, vol. 51(2), pages 737-754, May.
    17. Baldacci, Roberto & Hill, Alessandro & Hoshino, Edna A. & Lim, Andrew, 2017. "Pricing strategies for capacitated ring-star problems based on dynamic programming algorithms," European Journal of Operational Research, Elsevier, vol. 262(3), pages 879-893.
    18. Christian Tilk & Stefan Irnich, 2017. "Dynamic Programming for the Minimum Tour Duration Problem," Transportation Science, INFORMS, vol. 51(2), pages 549-565, May.
    19. Ann-Kathrin Rothenbächer, 2017. "Branch-and-Price-and-Cut for the Periodic Vehicle Routing Problem with Flexible Schedule Structures," Working Papers 1714, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    20. Christos Orlis & Nicola Bianchessi & Roberto Roberti & Wout Dullaert, 2020. "The Team Orienteering Problem with Overlaps: An Application in Cash Logistics," Transportation Science, INFORMS, vol. 54(2), pages 470-487, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rivera, Juan Carlos & Murat Afsar, H. & Prins, Christian, 2016. "Mathematical formulations and exact algorithm for the multitrip cumulative capacitated single-vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 249(1), pages 93-104.
    2. Juan Rivera & H. Afsar & Christian Prins, 2015. "A multistart iterated local search for the multitrip cumulative capacitated vehicle routing problem," Computational Optimization and Applications, Springer, vol. 61(1), pages 159-187, May.
    3. Silva, Marcos Melo & Subramanian, Anand & Vidal, Thibaut & Ochi, Luiz Satoru, 2012. "A simple and effective metaheuristic for the Minimum Latency Problem," European Journal of Operational Research, Elsevier, vol. 221(3), pages 513-520.
    4. F. Angel-Bello & Y. Cardona-Valdés & A. Álvarez, 2019. "Mixed integer formulations for the multiple minimum latency problem," Operational Research, Springer, vol. 19(2), pages 369-398, June.
    5. Jan Mikula & Miroslav Kulich, 2022. "Solving the traveling delivery person problem with limited computational time," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(4), pages 1451-1481, December.
    6. Kinable, Joris & Cire, Andre A. & van Hoeve, Willem-Jan, 2017. "Hybrid optimization methods for time-dependent sequencing problems," European Journal of Operational Research, Elsevier, vol. 259(3), pages 887-897.
    7. Vu, Duc Minh & Hewitt, Mike & Vu, Duc D., 2022. "Solving the time dependent minimum tour duration and delivery man problems with dynamic discretization discovery," European Journal of Operational Research, Elsevier, vol. 302(3), pages 831-846.
    8. Ricardo Fukasawa & Qie He & Yongjia Song, 2016. "A Branch-Cut-and-Price Algorithm for the Energy Minimization Vehicle Routing Problem," Transportation Science, INFORMS, vol. 50(1), pages 23-34, February.
    9. Bruni, M.E. & Khodaparasti, S. & Beraldi, P., 2020. "The selective minimum latency problem under travel time variability: An application to post-disaster assessment operations," Omega, Elsevier, vol. 92(C).
    10. Akbari, Vahid & Shiri, Davood, 2021. "Weighted online minimum latency problem with edge uncertainty," European Journal of Operational Research, Elsevier, vol. 295(1), pages 51-65.
    11. Fink, Andreas & Vo[ss], Stefan, 2003. "Solving the continuous flow-shop scheduling problem by metaheuristics," European Journal of Operational Research, Elsevier, vol. 151(2), pages 400-414, December.
    12. Albert Einstein Fernandes Muritiba & Tibérius O. Bonates & Stênio Oliveira Da Silva & Manuel Iori, 2021. "Branch-and-Cut and Iterated Local Search for the Weighted k -Traveling Repairman Problem: An Application to the Maintenance of Speed Cameras," Transportation Science, INFORMS, vol. 55(1), pages 139-159, 1-2.
    13. Cacchiani, Valentina & Contreras-Bolton, Carlos & Toth, Paolo, 2020. "Models and algorithms for the Traveling Salesman Problem with Time-dependent Service times," European Journal of Operational Research, Elsevier, vol. 283(3), pages 825-843.
    14. Miranda-Bront, Juan José & Méndez-Díaz, Isabel & Zabala, Paula, 2014. "Facets and valid inequalities for the time-dependent travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 891-902.
    15. Caio Marinho Damião & João Marcos Pereira Silva & Eduardo Uchoa, 2023. "A branch-cut-and-price algorithm for the cumulative capacitated vehicle routing problem," 4OR, Springer, vol. 21(1), pages 47-71, March.
    16. Furini, Fabio & Persiani, Carlo Alfredo & Toth, Paolo, 2016. "The Time Dependent Traveling Salesman Planning Problem in Controlled Airspace," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 38-55.
    17. Morais, Rafael & Bulhões, Teobaldo & Subramanian, Anand, 2024. "Exact and heuristic algorithms for minimizing the makespan on a single machine scheduling problem with sequence-dependent setup times and release dates," European Journal of Operational Research, Elsevier, vol. 315(2), pages 442-453.
    18. Qie He & Stefan Irnich & Yongjia Song, 2018. "Branch-Cut-and-Price for the Vehicle Routing Problem with Time Windows and Convex Node Costs," Working Papers 1804, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    19. Boysen, Nils & Schwerdfeger, Stefan & Weidinger, Felix, 2018. "Scheduling last-mile deliveries with truck-based autonomous robots," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1085-1099.
    20. Jean-François Cordeau & Gianpaolo Ghiani & Emanuela Guerriero, 2014. "Analysis and Branch-and-Cut Algorithm for the Time-Dependent Travelling Salesman Problem," Transportation Science, INFORMS, vol. 48(1), pages 46-58, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:48:y:2014:i:3:p:413-424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.