IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v283y2020i3p825-843.html
   My bibliography  Save this article

Models and algorithms for the Traveling Salesman Problem with Time-dependent Service times

Author

Listed:
  • Cacchiani, Valentina
  • Contreras-Bolton, Carlos
  • Toth, Paolo

Abstract

The Traveling Salesman Problem with Time-dependent Service times (TSP-TS) is a generalization of the Asymmetric TSP, in which the service time at each customer is given by a (linear or quadratic) function of the corresponding start time of service. TSP-TS calls for determining a Hamiltonian tour (i.e. a tour visiting each customer exactly once) that minimizes the total tour duration, given by the sum of travel and service times. We propose a new Mixed Integer Programming model for TSP-TS, that is enhanced by lower and upper bounds that improve previous bounds from the literature, and by incorporating exponentially many subtour elimination constraints, that are separated in a dynamic way. In addition, we develop a multi-operator genetic algorithm and two Branch-and-Cut methods, based on the proposed model. The algorithms are tested on benchmark symmetric instances from the literature, and compared with an existing approach. The computational results show that the proposed exact methods are able to prove the optimality of the solutions found for a larger set of instances in shorter computing times. We also tested the Branch-and-Cut algorithms on larger size symmetric instances with up to 58 nodes and on asymmetric instances with up to 45 nodes, demonstrating the effectiveness of the proposed algorithms. In addition, we tested the genetic algorithm on symmetric and asymmetric instances with up to 200 nodes.

Suggested Citation

  • Cacchiani, Valentina & Contreras-Bolton, Carlos & Toth, Paolo, 2020. "Models and algorithms for the Traveling Salesman Problem with Time-dependent Service times," European Journal of Operational Research, Elsevier, vol. 283(3), pages 825-843.
  • Handle: RePEc:eee:ejores:v:283:y:2020:i:3:p:825-843
    DOI: 10.1016/j.ejor.2019.11.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719309580
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.11.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gouveia, Luis & Vo[ss], Stefan, 1995. "A classification of formulations for the (time-dependent) traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 83(1), pages 69-82, May.
    2. Miranda-Bront, Juan José & Méndez-Díaz, Isabel & Zabala, Paula, 2014. "Facets and valid inequalities for the time-dependent travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 891-902.
    3. Sun, Peng & Veelenturf, Lucas P. & Dabia, Said & Van Woensel, Tom, 2018. "The time-dependent capacitated profitable tour problem with time windows and precedence constraints," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1058-1073.
    4. Taş, Duygu & Gendreau, Michel & Jabali, Ola & Laporte, Gilbert, 2016. "The traveling salesman problem with time-dependent service times," European Journal of Operational Research, Elsevier, vol. 248(2), pages 372-383.
    5. Russ J. Vander Wiel & Nikolaos V. Sahinidis, 1996. "An exact solution approach for the time‐dependent traveling‐salesman problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(6), pages 797-820, September.
    6. G. Dantzig & R. Fulkerson & S. Johnson, 1954. "Solution of a Large-Scale Traveling-Salesman Problem," Operations Research, INFORMS, vol. 2(4), pages 393-410, November.
    7. Carlos Contreras-Bolton & Victor Parada, 2015. "Automatic Combination of Operators in a Genetic Algorithm to Solve the Traveling Salesman Problem," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-25, September.
    8. Natashia Boland & Mike Hewitt & Luke Marshall & Martin Savelsbergh, 2017. "The Continuous-Time Service Network Design Problem," Operations Research, INFORMS, vol. 65(5), pages 1303-1321, October.
    9. Gerhard Reinelt, 1991. "TSPLIB—A Traveling Salesman Problem Library," INFORMS Journal on Computing, INFORMS, vol. 3(4), pages 376-384, November.
    10. Kinable, Joris & Cire, Andre A. & van Hoeve, Willem-Jan, 2017. "Hybrid optimization methods for time-dependent sequencing problems," European Journal of Operational Research, Elsevier, vol. 259(3), pages 887-897.
    11. Francesco Maffioli & Anna Sciomachen, 1997. "A mixed-integer model for solving ordering problems with side constraints," Annals of Operations Research, Springer, vol. 69(0), pages 277-297, January.
    12. Jean-Claude Picard & Maurice Queyranne, 1978. "The Time-Dependent Traveling Salesman Problem and Its Application to the Tardiness Problem in One-Machine Scheduling," Operations Research, INFORMS, vol. 26(1), pages 86-110, February.
    13. Ichoua, Soumia & Gendreau, Michel & Potvin, Jean-Yves, 2003. "Vehicle dispatching with time-dependent travel times," European Journal of Operational Research, Elsevier, vol. 144(2), pages 379-396, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Xuan & Pan, Quan-Ke & Gao, Liang & Neufeld, Janis S., 2023. "An asymmetric traveling salesman problem based matheuristic algorithm for flowshop group scheduling problem," European Journal of Operational Research, Elsevier, vol. 310(2), pages 597-610.
    2. Taillard, Éric D., 2022. "A linearithmic heuristic for the travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 297(2), pages 442-450.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vu, Duc Minh & Hewitt, Mike & Vu, Duc D., 2022. "Solving the time dependent minimum tour duration and delivery man problems with dynamic discretization discovery," European Journal of Operational Research, Elsevier, vol. 302(3), pages 831-846.
    2. Albert Einstein Fernandes Muritiba & Tibérius O. Bonates & Stênio Oliveira Da Silva & Manuel Iori, 2021. "Branch-and-Cut and Iterated Local Search for the Weighted k -Traveling Repairman Problem: An Application to the Maintenance of Speed Cameras," Transportation Science, INFORMS, vol. 55(1), pages 139-159, 1-2.
    3. F. Angel-Bello & Y. Cardona-Valdés & A. Álvarez, 2019. "Mixed integer formulations for the multiple minimum latency problem," Operational Research, Springer, vol. 19(2), pages 369-398, June.
    4. Lera-Romero, Gonzalo & Miranda-Bront, Juan José, 2021. "A branch and cut algorithm for the time-dependent profitable tour problem with resource constraints," European Journal of Operational Research, Elsevier, vol. 289(3), pages 879-896.
    5. Jan Mikula & Miroslav Kulich, 2022. "Solving the traveling delivery person problem with limited computational time," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(4), pages 1451-1481, December.
    6. Furini, Fabio & Persiani, Carlo Alfredo & Toth, Paolo, 2016. "The Time Dependent Traveling Salesman Planning Problem in Controlled Airspace," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 38-55.
    7. Jean-François Cordeau & Gianpaolo Ghiani & Emanuela Guerriero, 2014. "Analysis and Branch-and-Cut Algorithm for the Time-Dependent Travelling Salesman Problem," Transportation Science, INFORMS, vol. 48(1), pages 46-58, February.
    8. A. S. Santos & A. M. Madureira & M. L. R. Varela, 2018. "The Influence of Problem Specific Neighborhood Structures in Metaheuristics Performance," Journal of Mathematics, Hindawi, vol. 2018, pages 1-14, July.
    9. Markus Sinnl, 2021. "Mixed-integer programming approaches for the time-constrained maximal covering routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(2), pages 497-542, June.
    10. Gary R. Waissi & Pragya Kaushal, 2020. "A polynomial matrix processing heuristic algorithm for finding high quality feasible solutions for the TSP," OPSEARCH, Springer;Operational Research Society of India, vol. 57(1), pages 73-87, March.
    11. Balma, Ali & Salem, Safa Ben & Mrad, Mehdi & Ladhari, Talel, 2018. "Strong multi-commodity flow formulations for the asymmetric traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 271(1), pages 72-79.
    12. Kinable, Joris & Cire, Andre A. & van Hoeve, Willem-Jan, 2017. "Hybrid optimization methods for time-dependent sequencing problems," European Journal of Operational Research, Elsevier, vol. 259(3), pages 887-897.
    13. William Cook & Daniel G. Espinoza & Marcos Goycoolea, 2007. "Computing with Domino-Parity Inequalities for the Traveling Salesman Problem (TSP)," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 356-365, August.
    14. Gianpaolo Ghiani & Gilbert Laporte & Frédéric Semet, 2006. "The Black and White Traveling Salesman Problem," Operations Research, INFORMS, vol. 54(2), pages 366-378, April.
    15. Sleegers, Joeri & Olij, Richard & van Horn, Gijs & van den Berg, Daan, 2020. "Where the really hard problems aren’t," Operations Research Perspectives, Elsevier, vol. 7(C).
    16. Burger, M. & Su, Z. & De Schutter, B., 2018. "A node current-based 2-index formulation for the fixed-destination multi-depot travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 265(2), pages 463-477.
    17. Bernardino, Raquel & Paias, Ana, 2018. "Solving the family traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 267(2), pages 453-466.
    18. Thomas R. Visser & Remy Spliet, 2020. "Efficient Move Evaluations for Time-Dependent Vehicle Routing Problems," Transportation Science, INFORMS, vol. 54(4), pages 1091-1112, July.
    19. Muren, & Wu, Jianjun & Zhou, Li & Du, Zhiping & Lv, Ying, 2019. "Mixed steepest descent algorithm for the traveling salesman problem and application in air logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 87-102.
    20. Visser, T.R. & Spliet, R., 2017. "Efficient Move Evaluations for Time-Dependent Vehicle Routing Problems," Econometric Institute Research Papers EI2017-23, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:283:y:2020:i:3:p:825-843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.