IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v53y2019i3p850-866.html
   My bibliography  Save this article

Branch-and-Price-and-Cut for the Periodic Vehicle Routing Problem with Flexible Schedule Structures

Author

Listed:
  • Ann-Kathrin Rothenbächer

    (Gutenberg School of Management and Economics, Johannes Gutenberg University, Mainz D-55099, Germany)

Abstract

This paper addresses the periodic vehicle routing problem with time windows (PVRPTW). Therein, customers require one or several visits during a planning horizon of several periods. The possible visiting patterns (schedules) per customer are limited. In the classical PVRPTW, it is common to assume that each customer requires a specific visit frequency and offers all corresponding schedules with regular intervals between the visits. In this paper, we permit all kinds of schedule structures and the choice of the service frequency. We present an exact branch-and-price-and-cut algorithm for the classical PVRPTW and its variant with flexible schedules. The pricing problems are elementary shortest-path problems with resource constraints. They can be based on one of two new types of networks and solved with a labeling algorithm, which uses several known acceleration techniques, such as the n g -path relaxation and dynamic halfway points within bidirectional labeling. For instances in which schedule sets fulfill a certain symmetry condition, we present specialized improvements of the algorithm, such as constraint aggregation and symmetry breaking. Computational tests on benchmark instances for the PVRPTW show the effectiveness of our algorithm. Furthermore, we analyze the impact of different schedule structures on run times and objective function values. The online appendix is available at https://doi.org/10.1287/trsc.2018.0855 .

Suggested Citation

  • Ann-Kathrin Rothenbächer, 2019. "Branch-and-Price-and-Cut for the Periodic Vehicle Routing Problem with Flexible Schedule Structures," Transportation Science, INFORMS, vol. 53(3), pages 850-866, May.
  • Handle: RePEc:inm:ortrsc:v:53:y:2019:i:3:p:850-866
    DOI: 10.1287/trsc.2018.0855
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/trsc.2018.0855
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2018.0855?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter Francis & Karen Smilowitz & Michal Tzur, 2006. "The Period Vehicle Routing Problem with Service Choice," Transportation Science, INFORMS, vol. 40(4), pages 439-454, November.
    2. Hemmelmayr, Vera C. & Doerner, Karl F. & Hartl, Richard F., 2009. "A variable neighborhood search heuristic for periodic routing problems," European Journal of Operational Research, Elsevier, vol. 195(3), pages 791-802, June.
    3. Peter Francis & Karen Smilowitz & Michal Tzur, 2007. "Flexibility and complexity in periodic distribution problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(2), pages 136-150, March.
    4. Claudia Bode & Stefan Irnich, 2015. "In-Depth Analysis of Pricing Problem Relaxations for the Capacitated Arc-Routing Problem," Transportation Science, INFORMS, vol. 49(2), pages 369-383, May.
    5. J-F Cordeau & G Laporte & A Mercier, 2004. "Improved tabu search algorithm for the handling of route duration constraints in vehicle routing problems with time windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(5), pages 542-546, May.
    6. Michel Gamache & François Soumis & Gérald Marquis & Jacques Desrosiers, 1999. "A Column Generation Approach for Large-Scale Aircrew Rostering Problems," Operations Research, INFORMS, vol. 47(2), pages 247-263, April.
    7. M. Gaudioso & G. Paletta, 1992. "A Heuristic for the Periodic Vehicle Routing Problem," Transportation Science, INFORMS, vol. 26(2), pages 86-92, May.
    8. Rasmussen, Matias Sevel & Justesen, Tor & Dohn, Anders & Larsen, Jesper, 2012. "The Home Care Crew Scheduling Problem: Preference-based visit clustering and temporal dependencies," European Journal of Operational Research, Elsevier, vol. 219(3), pages 598-610.
    9. Ann-Kathrin Rothenbächer & Michael Drexl & Stefan Irnich, 2018. "Branch-and-Price-and-Cut for the Truck-and-Trailer Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 52(5), pages 1174-1190, October.
    10. Irnich, S. & Schneider, M. & Vigo, D., 2014. "Four Variants of the Vehicle Routing Problem," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 63514, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    11. Christian Tilk & Stefan Irnich, 2017. "Dynamic Programming for the Minimum Tour Duration Problem," Transportation Science, INFORMS, vol. 51(2), pages 549-565, May.
    12. Stefan Irnich & Guy Desaulniers, 2005. "Shortest Path Problems with Resource Constraints," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 33-65, Springer.
    13. Eveborn, Patrik & Flisberg, Patrik & Ronnqvist, Mikael, 2006. "Laps Care--an operational system for staff planning of home care," European Journal of Operational Research, Elsevier, vol. 171(3), pages 962-976, June.
    14. Marco E. Lübbecke & Jacques Desrosiers, 2005. "Selected Topics in Column Generation," Operations Research, INFORMS, vol. 53(6), pages 1007-1023, December.
    15. Tan, C.C.R. & Beasley, J.E., 1984. "A heuristic algorithm for the period vehicle routing problem," Omega, Elsevier, vol. 12(5), pages 497-504.
    16. Villeneuve, Daniel & Desaulniers, Guy, 2005. "The shortest path problem with forbidden paths," European Journal of Operational Research, Elsevier, vol. 165(1), pages 97-107, August.
    17. Roberto Roberti & Aristide Mingozzi, 2014. "Dynamic ng-Path Relaxation for the Delivery Man Problem," Transportation Science, INFORMS, vol. 48(3), pages 413-424, August.
    18. Theodore Athanasopoulos & Ioannis Minis, 2013. "Efficient techniques for the multi-period vehicle routing problem with time windows within a branch and price framework," Annals of Operations Research, Springer, vol. 206(1), pages 1-22, July.
    19. Tilk, Christian & Rothenbächer, Ann-Kathrin & Gschwind, Timo & Irnich, Stefan, 2017. "Asymmetry matters: Dynamic half-way points in bidirectional labeling for solving shortest path problems with resource constraints faster," European Journal of Operational Research, Elsevier, vol. 261(2), pages 530-539.
    20. Mads Jepsen & Bjørn Petersen & Simon Spoorendonk & David Pisinger, 2008. "Subset-Row Inequalities Applied to the Vehicle-Routing Problem with Time Windows," Operations Research, INFORMS, vol. 56(2), pages 497-511, April.
    21. J-F Cordeau & G Laporte & A Mercier, 2001. "A unified tabu search heuristic for vehicle routing problems with time windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(8), pages 928-936, August.
    22. Leandro C. Coelho & Jean-François Cordeau & Gilbert Laporte, 2014. "Thirty Years of Inventory Routing," Transportation Science, INFORMS, vol. 48(1), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ann-Kathrin Rothenbächer, 2017. "Branch-and-Price-and-Cut for the Periodic Vehicle Routing Problem with Flexible Schedule Structures," Working Papers 1714, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    2. Tilk, Christian & Drexl, Michael & Irnich, Stefan, 2019. "Nested branch-and-price-and-cut for vehicle routing problems with multiple resource interdependencies," European Journal of Operational Research, Elsevier, vol. 276(2), pages 549-565.
    3. Katrin Heßler & Stefan Irnich, 2023. "Partial Dominance in Branch-Price-and-Cut for the Basic Multicompartment Vehicle-Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 50-65, January.
    4. Katrin Heßler & Stefan Irnich, 2021. "Partial Dominance in Branch-Price-and-Cut for the Basic Multi-Compartment Vehicle-Routing Problem," Working Papers 2115, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    5. Christian Tilk & Michael Drexl & Stefan Irnich, 2018. "Nested Branch-and-Price-and-Cut for Vehicle Routing Problems with Multiple Resource Interdependencies," Working Papers 1801, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    6. Guy Desaulniers & Diego Pecin & Claudio Contardo, 2019. "Selective pricing in branch-price-and-cut algorithms for vehicle routing," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 147-168, June.
    7. Li, Jiliu & Qin, Hu & Baldacci, Roberto & Zhu, Wenbin, 2020. "Branch-and-price-and-cut for the synchronized vehicle routing problem with split delivery, proportional service time and multiple time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    8. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    9. Gschwind, Timo & Bianchessi, Nicola & Irnich, Stefan, 2019. "Stabilized branch-price-and-cut for the commodity-constrained split delivery vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 278(1), pages 91-104.
    10. Ruslan Sadykov & Eduardo Uchoa & Artur Pessoa, 2021. "A Bucket Graph–Based Labeling Algorithm with Application to Vehicle Routing," Transportation Science, INFORMS, vol. 55(1), pages 4-28, 1-2.
    11. Nicola Bianchessi & Stefan Irnich & Christian Tilk, 2020. "A Branch-Price-and-Cut Algorithm for the Capacitated Multiple Vehicle Traveling Purchaser Problem with Unitary Demand," Working Papers 2003, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    12. Timo Hintsch & Stefan Irnich & Lone Kiilerich, 2021. "Branch-Price-and-Cut for the Soft-Clustered Capacitated Arc-Routing Problem," Transportation Science, INFORMS, vol. 55(3), pages 687-705, May.
    13. Gschwind, Timo, 2015. "A comparison of column-generation approaches to the Synchronized Pickup and Delivery Problem," European Journal of Operational Research, Elsevier, vol. 247(1), pages 60-71.
    14. Guy Desaulniers & Fausto Errico & Stefan Irnich & Michael Schneider, 2016. "Exact Algorithms for Electric Vehicle-Routing Problems with Time Windows," Operations Research, INFORMS, vol. 64(6), pages 1388-1405, December.
    15. Timo Gschwind & Stefan Irnich, 2015. "Effective Handling of Dynamic Time Windows and Its Application to Solving the Dial-a-Ride Problem," Transportation Science, INFORMS, vol. 49(2), pages 335-354, May.
    16. Christian Tilk & Nicola Bianchessi & Michael Drexl & Stefan Irnich & Frank Meisel, 2018. "Branch-and-Price-and-Cut for the Active-Passive Vehicle-Routing Problem," Transportation Science, INFORMS, vol. 52(2), pages 300-319, March.
    17. Guy Desaulniers & Timo Gschwind & Stefan Irnich, 2020. "Variable Fixing for Two-Arc Sequences in Branch-Price-and-Cut Algorithms on Path-Based Models," Transportation Science, INFORMS, vol. 54(5), pages 1526-5447, September.
    18. Arpan Rijal & Marco Bijvank & Asvin Goel & René de Koster, 2021. "Workforce Scheduling with Order-Picking Assignments in Distribution Facilities," Transportation Science, INFORMS, vol. 55(3), pages 725-746, May.
    19. Schmid, Verena & Doerner, Karl F. & Laporte, Gilbert, 2013. "Rich routing problems arising in supply chain management," European Journal of Operational Research, Elsevier, vol. 224(3), pages 435-448.
    20. Ann-Kathrin Rothenbächer & Michael Drexl & Stefan Irnich, 2018. "Branch-and-Price-and-Cut for the Truck-and-Trailer Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 52(5), pages 1174-1190, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:53:y:2019:i:3:p:850-866. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.