IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v41y2007i1p90-106.html
   My bibliography  Save this article

Hybrid Metaheuristics to Aid Runway Scheduling at London Heathrow Airport

Author

Listed:
  • Jason A. D. Atkin

    (School of Computer Science and Information Technology, University of Nottingham, Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, United Kingdom)

  • Edmund K. Burke

    (School of Computer Science and Information Technology, University of Nottingham, Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, United Kingdom)

  • John S. Greenwood

    (NATS CTC, 4000 Parkway, Whiteley, Fareham, Hampshire, PO15 7FL, United Kingdom)

  • Dale Reeson

    (National Air Traffic Services, Heathrow Airport, Hounslow, Middlesex, TW6 1JJ, United Kingdom)

Abstract

Although London Heathrow is one of the busiest airports in the world, it has only one runway for use by departing aircraft at any time. Separations are required between each pair of aircraft at take-off---depending on their routes, weights, and speeds---to ensure safety. Efficient scheduling of the aircraft for take-off can reduce the total separations and increase throughput. A runway controller is responsible for take-off scheduling. This is a very intensive job with responsibility for all communication with aircraft and continuous monitoring to assure safety. The high workload limits the number of aircraft that the controller can take account of when scheduling. The geometry of the runway holding points adds physical constraints to the reordering of aircraft that are usually ignored in the academic literature. We present models for evaluating a schedule and determining the effects of the physical constraints. We propose a hybrid metaheuristic system that takes account of more aircraft than a human controller can handle, and so can aid the runway controller by recommending schedules that anticipate some future problems. We present results to show the effectiveness of this system, and we evaluate those results against real-world schedules.

Suggested Citation

  • Jason A. D. Atkin & Edmund K. Burke & John S. Greenwood & Dale Reeson, 2007. "Hybrid Metaheuristics to Aid Runway Scheduling at London Heathrow Airport," Transportation Science, INFORMS, vol. 41(1), pages 90-106, February.
  • Handle: RePEc:inm:ortrsc:v:41:y:2007:i:1:p:90-106
    DOI: 10.1287/trsc.1060.0163
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.1060.0163
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.1060.0163?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. L. Bianco & P. Dell'Olmo & S. Giordani, 1999. "Minimizing total completion time subject to release dates and sequence‐dependentprocessing times," Annals of Operations Research, Springer, vol. 86(0), pages 393-415, January.
    2. J E Beasley & J Sonander & P Havelock, 2001. "Scheduling aircraft landings at London Heathrow using a population heuristic," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(5), pages 483-493, May.
    3. G. F. Newell, 1979. "Airport Capacity and Delays," Transportation Science, INFORMS, vol. 13(3), pages 201-241, August.
    4. J. E. Beasley & M. Krishnamoorthy & Y. M. Sharaiha & D. Abramson, 2000. "Scheduling Aircraft Landings—The Static Case," Transportation Science, INFORMS, vol. 34(2), pages 180-197, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julia Bennell & Mohammad Mesgarpour & Chris Potts, 2013. "Airport runway scheduling," Annals of Operations Research, Springer, vol. 204(1), pages 249-270, April.
    2. Weiszer, Michal & Chen, Jun & Locatelli, Giorgio, 2015. "An integrated optimisation approach to airport ground operations to foster sustainability in the aviation sector," Applied Energy, Elsevier, vol. 157(C), pages 567-582.
    3. Jason A. D. Atkin & Edmund K. Burke & John S. Greenwood & Dale Reeson, 2009. "An examination of take-off scheduling constraints at London Heathrow airport," Public Transport, Springer, vol. 1(3), pages 169-187, August.
    4. Han Zhong & Wei Guan & Wenyi Zhang & Shixiong Jiang & Lingling Fan, 2018. "A bi-objective integer programming model for partly-restricted flight departure scheduling," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-18, May.
    5. Ahmed Ghoniem & Hanif D. Sherali & Hojong Baik, 2014. "Enhanced Models for a Mixed Arrival-Departure Aircraft Sequencing Problem," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 514-530, August.
    6. Samà, Marcella & D’Ariano, Andrea & D’Ariano, Paolo & Pacciarelli, Dario, 2017. "Scheduling models for optimal aircraft traffic control at busy airports: Tardiness, priorities, equity and violations considerations," Omega, Elsevier, vol. 67(C), pages 81-98.
    7. Jason A. D. Atkin & Geert De Maere & Edmund K. Burke & John S. Greenwood, 2013. "Addressing the Pushback Time Allocation Problem at Heathrow Airport," Transportation Science, INFORMS, vol. 47(4), pages 584-602, November.
    8. Jianan Yin & Yuanyuan Ma & Yuxin Hu & Ke Han & Suwan Yin & Hua Xie, 2021. "Delay, Throughput and Emission Tradeoffs in Airport Runway Scheduling with Uncertainty Considerations," Networks and Spatial Economics, Springer, vol. 21(1), pages 85-122, March.
    9. Yiting Xing & Ling Li & Zhuming Bi & Marzena Wilamowska‐Korsak & Li Zhang, 2013. "Operations Research (OR) in Service Industries: A Comprehensive Review," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(3), pages 300-353, May.
    10. Guépet, Julien & Briant, Olivier & Gayon, Jean-Philippe & Acuna-Agost, Rodrigo, 2017. "Integration of aircraft ground movements and runway operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 131-149.
    11. Hancerliogullari, Gulsah & Rabadi, Ghaith & Al-Salem, Ameer H. & Kharbeche, Mohamed, 2013. "Greedy algorithms and metaheuristics for a multiple runway combined arrival-departure aircraft sequencing problem," Journal of Air Transport Management, Elsevier, vol. 32(C), pages 39-48.
    12. Sadeque Hamdan & Oualid Jouini & Ali Cheaitou & Zied Jemai & Tobias Andersson Granberg, 2023. "On the binary formulation of air traffic flow management problems," Annals of Operations Research, Springer, vol. 321(1), pages 267-279, February.
    13. Marcella Samà & Andrea D’Ariano & Konstantin Palagachev & Matthias Gerdts, 2019. "Integration methods for aircraft scheduling and trajectory optimization at a busy terminal manoeuvring area," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 641-681, September.
    14. Daniel Karapetyan & Jason A. D. Atkin & Andrew J. Parkes & Juan Castro-Gutierrez, 2017. "Lessons from building an automated pre-departure sequencer for airports," Annals of Operations Research, Springer, vol. 252(2), pages 435-453, May.
    15. Heidt, Andreas & Helmke, Hartmut & Kapolke, Manu & Liers, Frauke & Martin, Alexander, 2016. "Robust runway scheduling under uncertain conditions," Journal of Air Transport Management, Elsevier, vol. 56(PA), pages 28-37.
    16. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    17. Jaehn, Florian & Neumann, Simone, 2015. "Airplane boarding," European Journal of Operational Research, Elsevier, vol. 244(2), pages 339-359.
    18. Geert De Maere & Jason A. D. Atkin & Edmund K. Burke, 2018. "Pruning Rules for Optimal Runway Sequencing," Transportation Science, INFORMS, vol. 52(4), pages 898-916, August.
    19. Pasquale Avella & Maurizio Boccia & Carlo Mannino & Igor Vasilyev, 2017. "Time-Indexed Formulations for the Runway Scheduling Problem," Transportation Science, INFORMS, vol. 51(4), pages 1196-1209, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jason A. D. Atkin & Edmund K. Burke & John S. Greenwood & Dale Reeson, 2009. "An examination of take-off scheduling constraints at London Heathrow airport," Public Transport, Springer, vol. 1(3), pages 169-187, August.
    2. Daniel Karapetyan & Jason A. D. Atkin & Andrew J. Parkes & Juan Castro-Gutierrez, 2017. "Lessons from building an automated pre-departure sequencer for airports," Annals of Operations Research, Springer, vol. 252(2), pages 435-453, May.
    3. Julia Bennell & Mohammad Mesgarpour & Chris Potts, 2013. "Airport runway scheduling," Annals of Operations Research, Springer, vol. 204(1), pages 249-270, April.
    4. Ahmed Ghoniem & Hanif D. Sherali & Hojong Baik, 2014. "Enhanced Models for a Mixed Arrival-Departure Aircraft Sequencing Problem," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 514-530, August.
    5. A R Brentnall & R C H Cheng, 2009. "Some effects of aircraft arrival sequence algorithms," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(7), pages 962-972, July.
    6. Dixit, Aasheesh & Jakhar, Suresh Kumar, 2021. "Airport capacity management: A review and bibliometric analysis," Journal of Air Transport Management, Elsevier, vol. 91(C).
    7. Anna Kwasiborska & Jacek Skorupski, 2021. "Assessment of the Method of Merging Landing Aircraft Streams in the Context of Fuel Consumption in the Airspace," Sustainability, MDPI, vol. 13(22), pages 1-18, November.
    8. Bo Xu & Weimin Ma & Hui Huang & Lei Yue, 2016. "Weighted Constrained Position Shift Model for Aircraft Arrival Sequencing and Scheduling Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(04), pages 1-22, August.
    9. Chandra, Aitichya & Choubey, Nipun & Verma, Ashish & Sooraj, K.P., 2024. "Quasi-stochastic optimization model for time-based arrival scheduling considering Standard Terminal Arrival (STAR) track time and a new delay-conflict relationship," Journal of Air Transport Management, Elsevier, vol. 115(C).
    10. Salehipour, Amir, 2020. "An algorithm for single- and multiple-runway aircraft landing problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 175(C), pages 179-191.
    11. Pohl, Maximilian & Kolisch, Rainer & Schiffer, Maximilian, 2021. "Runway scheduling during winter operations," Omega, Elsevier, vol. 102(C).
    12. Han Zhong & Wei Guan & Wenyi Zhang & Shixiong Jiang & Lingling Fan, 2018. "A bi-objective integer programming model for partly-restricted flight departure scheduling," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-18, May.
    13. Rakesh Prakash & Jitamitra Desai & Rajesh Piplani, 2022. "An optimal data-splitting algorithm for aircraft sequencing on a single runway," Annals of Operations Research, Springer, vol. 309(2), pages 587-610, February.
    14. Jason A. D. Atkin & Geert De Maere & Edmund K. Burke & John S. Greenwood, 2013. "Addressing the Pushback Time Allocation Problem at Heathrow Airport," Transportation Science, INFORMS, vol. 47(4), pages 584-602, November.
    15. J E Beasley & M Krishnamoorthy & Y M Sharaiha & D Abramson, 2004. "Displacement problem and dynamically scheduling aircraft landings," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(1), pages 54-64, January.
    16. Ng, K.K.H. & Lee, C.K.M. & Chan, Felix T.S. & Qin, Yichen, 2017. "Robust aircraft sequencing and scheduling problem with arrival/departure delay using the min-max regret approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 115-136.
    17. Samà, Marcella & D’Ariano, Andrea & D’Ariano, Paolo & Pacciarelli, Dario, 2017. "Scheduling models for optimal aircraft traffic control at busy airports: Tardiness, priorities, equity and violations considerations," Omega, Elsevier, vol. 67(C), pages 81-98.
    18. Pasquale Avella & Maurizio Boccia & Carlo Mannino & Igor Vasilyev, 2017. "Time-Indexed Formulations for the Runway Scheduling Problem," Transportation Science, INFORMS, vol. 51(4), pages 1196-1209, November.
    19. Geert De Maere & Jason A. D. Atkin & Edmund K. Burke, 2018. "Pruning Rules for Optimal Runway Sequencing," Transportation Science, INFORMS, vol. 52(4), pages 898-916, August.
    20. Pohl, Maximilian & Artigues, Christian & Kolisch, Rainer, 2022. "Solving the time-discrete winter runway scheduling problem: A column generation and constraint programming approach," European Journal of Operational Research, Elsevier, vol. 299(2), pages 674-689.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:41:y:2007:i:1:p:90-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.