IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v52y2018i4p898-916.html
   My bibliography  Save this article

Pruning Rules for Optimal Runway Sequencing

Author

Listed:
  • Geert De Maere

    (Automated Scheduling, Optimisation and Planning, School of Computer Science, University of Nottingham, Nottingham NG8 1BB, United Kingdom)

  • Jason A. D. Atkin

    (Automated Scheduling, Optimisation and Planning, School of Computer Science, University of Nottingham, Nottingham NG8 1BB, United Kingdom)

  • Edmund K. Burke

    (School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, United Kingdom)

Abstract

This paper investigates runway sequencing for real-world scenarios at one of the world’s busiest airports, London Heathrow. Several pruning principles are introduced that enable significant reductions of the problem’s average complexity, without compromising the optimality of the resulting sequences, nor compromising the modeling of important real-world constraints and objectives. The pruning principles are generic and can be applied in a variety of heuristic, metaheuristic, or exact algorithms. They could also be applied to different runway configurations, as well as to other variants of the machine scheduling problem with sequence dependent setup times, the generic variant of the runway sequencing problem in this paper. They have been integrated into a dynamic program for runway sequencing, which has been shown to be able to generate optimal sequences for large-scale problems at a low computational cost, while considering complex nonlinear and nonconvex objective functions that offer significant flexibility to model real-world preferences and real-world constraints. The results shown here clearly demonstrate that, by exploiting the problem structure, complex runway sequencing problems can be solved exactly.

Suggested Citation

  • Geert De Maere & Jason A. D. Atkin & Edmund K. Burke, 2018. "Pruning Rules for Optimal Runway Sequencing," Transportation Science, INFORMS, vol. 52(4), pages 898-916, August.
  • Handle: RePEc:inm:ortrsc:v:52:y:2018:i:4:p:898-916
    DOI: 10.1287/trsc.2016.0733
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/trsc.2016.0733
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2016.0733?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. L. Bianco & P. Dell'Olmo & S. Giordani, 1999. "Minimizing total completion time subject to release dates and sequence‐dependentprocessing times," Annals of Operations Research, Springer, vol. 86(0), pages 393-415, January.
    2. Hamsa Balakrishnan & Bala G. Chandran, 2010. "Algorithms for Scheduling Runway Operations Under Constrained Position Shifting," Operations Research, INFORMS, vol. 58(6), pages 1650-1665, December.
    3. Harilaos N. Psaraftis, 1980. "A Dynamic Programming Approach for Sequencing Groups of Identical Jobs," Operations Research, INFORMS, vol. 28(6), pages 1347-1359, December.
    4. Jason A. D. Atkin & Edmund K. Burke & John S. Greenwood & Dale Reeson, 2007. "Hybrid Metaheuristics to Aid Runway Scheduling at London Heathrow Airport," Transportation Science, INFORMS, vol. 41(1), pages 90-106, February.
    5. Allahverdi, Ali & Gupta, Jatinder N. D. & Aldowaisan, Tariq, 1999. "A review of scheduling research involving setup considerations," Omega, Elsevier, vol. 27(2), pages 219-239, April.
    6. Allahverdi, Ali & Ng, C.T. & Cheng, T.C.E. & Kovalyov, Mikhail Y., 2008. "A survey of scheduling problems with setup times or costs," European Journal of Operational Research, Elsevier, vol. 187(3), pages 985-1032, June.
    7. J. E. Beasley & M. Krishnamoorthy & Y. M. Sharaiha & D. Abramson, 2000. "Scheduling Aircraft Landings—The Static Case," Transportation Science, INFORMS, vol. 34(2), pages 180-197, May.
    8. S. S. Panwalkar & Wafik Iskander, 1977. "A Survey of Scheduling Rules," Operations Research, INFORMS, vol. 25(1), pages 45-61, February.
    9. Edward Sewell & Jason Sauppe & David Morrison & Sheldon Jacobson & Gio Kao, 2012. "A BB&R algorithm for minimizing total tardiness on a single machine with sequence dependent setup times," Journal of Global Optimization, Springer, vol. 54(4), pages 791-812, December.
    10. Luo, Xiaochuan & Chu, Chengbin, 2007. "A branch-and-bound algorithm of the single machine schedule with sequence-dependent setup times for minimizing maximum tardiness," European Journal of Operational Research, Elsevier, vol. 180(1), pages 68-81, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcella Samà & Andrea D’Ariano & Konstantin Palagachev & Matthias Gerdts, 2019. "Integration methods for aircraft scheduling and trajectory optimization at a busy terminal manoeuvring area," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 641-681, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jason A. D. Atkin & Geert De Maere & Edmund K. Burke & John S. Greenwood, 2013. "Addressing the Pushback Time Allocation Problem at Heathrow Airport," Transportation Science, INFORMS, vol. 47(4), pages 584-602, November.
    2. Ahmed Ghoniem & Hanif D. Sherali & Hojong Baik, 2014. "Enhanced Models for a Mixed Arrival-Departure Aircraft Sequencing Problem," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 514-530, August.
    3. Pohl, Maximilian & Kolisch, Rainer & Schiffer, Maximilian, 2021. "Runway scheduling during winter operations," Omega, Elsevier, vol. 102(C).
    4. Samà, Marcella & D’Ariano, Andrea & D’Ariano, Paolo & Pacciarelli, Dario, 2017. "Scheduling models for optimal aircraft traffic control at busy airports: Tardiness, priorities, equity and violations considerations," Omega, Elsevier, vol. 67(C), pages 81-98.
    5. Pohl, Maximilian & Artigues, Christian & Kolisch, Rainer, 2022. "Solving the time-discrete winter runway scheduling problem: A column generation and constraint programming approach," European Journal of Operational Research, Elsevier, vol. 299(2), pages 674-689.
    6. Senay Solak & Gustaf Solveling & John-Paul B. Clarke & Ellis L. Johnson, 2018. "Stochastic Runway Scheduling," Transportation Science, INFORMS, vol. 52(4), pages 917-940, August.
    7. Bo Xu & Weimin Ma & Hui Huang & Lei Yue, 2016. "Weighted Constrained Position Shift Model for Aircraft Arrival Sequencing and Scheduling Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(04), pages 1-22, August.
    8. Daniel Karapetyan & Jason A. D. Atkin & Andrew J. Parkes & Juan Castro-Gutierrez, 2017. "Lessons from building an automated pre-departure sequencer for airports," Annals of Operations Research, Springer, vol. 252(2), pages 435-453, May.
    9. Rakesh Prakash & Jitamitra Desai & Rajesh Piplani, 2022. "An optimal data-splitting algorithm for aircraft sequencing on a single runway," Annals of Operations Research, Springer, vol. 309(2), pages 587-610, February.
    10. Julia Bennell & Mohammad Mesgarpour & Chris Potts, 2013. "Airport runway scheduling," Annals of Operations Research, Springer, vol. 204(1), pages 249-270, April.
    11. A R Brentnall & R C H Cheng, 2009. "Some effects of aircraft arrival sequence algorithms," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(7), pages 962-972, July.
    12. Guépet, Julien & Briant, Olivier & Gayon, Jean-Philippe & Acuna-Agost, Rodrigo, 2017. "Integration of aircraft ground movements and runway operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 131-149.
    13. Jason A. D. Atkin & Edmund K. Burke & John S. Greenwood & Dale Reeson, 2009. "An examination of take-off scheduling constraints at London Heathrow airport," Public Transport, Springer, vol. 1(3), pages 169-187, August.
    14. Han Zhong & Wei Guan & Wenyi Zhang & Shixiong Jiang & Lingling Fan, 2018. "A bi-objective integer programming model for partly-restricted flight departure scheduling," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-18, May.
    15. Allahverdi, Ali, 2015. "The third comprehensive survey on scheduling problems with setup times/costs," European Journal of Operational Research, Elsevier, vol. 246(2), pages 345-378.
    16. Salehipour, Amir, 2020. "An algorithm for single- and multiple-runway aircraft landing problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 175(C), pages 179-191.
    17. Lieder, Alexander & Stolletz, Raik, 2016. "Scheduling aircraft take-offs and landings on interdependent and heterogeneous runways," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 167-188.
    18. Marcella Samà & Andrea D’Ariano & Konstantin Palagachev & Matthias Gerdts, 2019. "Integration methods for aircraft scheduling and trajectory optimization at a busy terminal manoeuvring area," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 641-681, September.
    19. Pasquale Avella & Maurizio Boccia & Carlo Mannino & Igor Vasilyev, 2017. "Time-Indexed Formulations for the Runway Scheduling Problem," Transportation Science, INFORMS, vol. 51(4), pages 1196-1209, November.
    20. Marko Ɖurasević & Domagoj Jakobović, 2019. "Creating dispatching rules by simple ensemble combination," Journal of Heuristics, Springer, vol. 25(6), pages 959-1013, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:52:y:2018:i:4:p:898-916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.