IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v115y2024ics0969699723001709.html
   My bibliography  Save this article

Quasi-stochastic optimization model for time-based arrival scheduling considering Standard Terminal Arrival (STAR) track time and a new delay-conflict relationship

Author

Listed:
  • Chandra, Aitichya
  • Choubey, Nipun
  • Verma, Ashish
  • Sooraj, K.P.

Abstract

This paper presents a quasi-stochastic mixed integer programming model to determine the optimal arrival schedule of flights in the Terminal Area (TMA). The proposed formulation addresses two key aspects of TMA operations: (i) the variability induced due to the Standard Terminal Arrival (STAR) descent procedure and (ii) the risk of merging conflicts due to scheduling delays. The variability arising from the STAR procedure is captured through a non-deterministic parameter defined as the track time. The risk of conflicts at merging points is quantified using the expected number of conflicts, estimated based on a new delay-conflict relationship. The optimization model is also extended for a multiple-runway structure. The Chennai International Airport TMA is taken as an experimental setup to validate the model. Performance assessment reveals that the observed throughput aligns with the throughput based on the optimal scheduling. Moreover, the number of conflicts is reduced by 100% after implementing the scheduling model. Research outcomes exhibit the potential to obtain practical arrival schedules with limiting controller workload. Implications of this work hint towards better stability and performance of the TMA and the overall Air Traffic Management (ATM) system.

Suggested Citation

  • Chandra, Aitichya & Choubey, Nipun & Verma, Ashish & Sooraj, K.P., 2024. "Quasi-stochastic optimization model for time-based arrival scheduling considering Standard Terminal Arrival (STAR) track time and a new delay-conflict relationship," Journal of Air Transport Management, Elsevier, vol. 115(C).
  • Handle: RePEc:eee:jaitra:v:115:y:2024:i:c:s0969699723001709
    DOI: 10.1016/j.jairtraman.2023.102527
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699723001709
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2023.102527?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhi Jun, Lim & Alam, Sameer & Dhief, Imen & Schultz, Michael, 2022. "Towards a greener Extended-Arrival Manager in air traffic control: A heuristic approach for dynamic speed control using machine-learned delay prediction model," Journal of Air Transport Management, Elsevier, vol. 103(C).
    2. Zhang, Junfeng & Zhao, Pengli & Zhang, Yu & Dai, Ximei & Sui, Dong, 2020. "Criteria selection and multi-objective optimization of aircraft landing problem," Journal of Air Transport Management, Elsevier, vol. 82(C).
    3. Hamsa Balakrishnan & Bala G. Chandran, 2010. "Algorithms for Scheduling Runway Operations Under Constrained Position Shifting," Operations Research, INFORMS, vol. 58(6), pages 1650-1665, December.
    4. Lambelho, Miguel & Mitici, Mihaela & Pickup, Simon & Marsden, Alan, 2020. "Assessing strategic flight schedules at an airport using machine learning-based flight delay and cancellation predictions," Journal of Air Transport Management, Elsevier, vol. 82(C).
    5. Sun, Xiaoqian & Wandelt, Sebastian & Zheng, Changhong & Zhang, Anming, 2021. "COVID-19 pandemic and air transportation: Successfully navigating the paper hurricane," Journal of Air Transport Management, Elsevier, vol. 94(C).
    6. Itoh, Eri & Mitici, Mihaela, 2020. "Analyzing tactical control strategies for aircraft arrivals at an airport using a queuing model," Journal of Air Transport Management, Elsevier, vol. 89(C).
    7. Hang Zhou & Xinxin Jiang, 2014. "Research on Arrival/Departure Scheduling of Flights on Multirunways Based on Genetic Algorithm," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-13, July.
    8. Albers, Sascha & Rundshagen, Volker, 2020. "European airlines′ strategic responses to the COVID-19 pandemic (January-May, 2020)," Journal of Air Transport Management, Elsevier, vol. 87(C).
    9. Soomer, M.J. & Franx, G.J., 2008. "Scheduling aircraft landings using airlines' preferences," European Journal of Operational Research, Elsevier, vol. 190(1), pages 277-291, October.
    10. Gui, Dongdong & Le, Meilong & Huang, Zhouchun & Zhang, Junfeng & D’Ariano, Andrea, 2023. "Optimal aircraft arrival scheduling with continuous descent operations in busy terminal maneuvering areas," Journal of Air Transport Management, Elsevier, vol. 107(C).
    11. Feuser Fernandes, H. & Müller, C., 2019. "Optimization of the waiting time and makespan in aircraft departures: A real time non-iterative sequencing model," Journal of Air Transport Management, Elsevier, vol. 79(C), pages 1-1.
    12. Vadlamani, Satish & Hosseini, Seyedmohsen, 2014. "A novel heuristic approach for solving aircraft landing problem with single runway," Journal of Air Transport Management, Elsevier, vol. 40(C), pages 144-148.
    13. J E Beasley & J Sonander & P Havelock, 2001. "Scheduling aircraft landings at London Heathrow using a population heuristic," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(5), pages 483-493, May.
    14. Ahmed Ghoniem & Hanif D. Sherali & Hojong Baik, 2014. "Enhanced Models for a Mixed Arrival-Departure Aircraft Sequencing Problem," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 514-530, August.
    15. Maneenop, Sakkakom & Kotcharin, Suntichai, 2020. "The impacts of COVID-19 on the global airline industry: An event study approach," Journal of Air Transport Management, Elsevier, vol. 89(C).
    16. Hancerliogullari, Gulsah & Rabadi, Ghaith & Al-Salem, Ameer H. & Kharbeche, Mohamed, 2013. "Greedy algorithms and metaheuristics for a multiple runway combined arrival-departure aircraft sequencing problem," Journal of Air Transport Management, Elsevier, vol. 32(C), pages 39-48.
    17. Dube, Kaitano & Nhamo, Godwell & Chikodzi, David, 2021. "COVID-19 pandemic and prospects for recovery of the global aviation industry," Journal of Air Transport Management, Elsevier, vol. 92(C).
    18. J. E. Beasley & M. Krishnamoorthy & Y. M. Sharaiha & D. Abramson, 2000. "Scheduling Aircraft Landings—The Static Case," Transportation Science, INFORMS, vol. 34(2), pages 180-197, May.
    19. Sun, Xiaoqian & Wandelt, Sebastian & Zhang, Anming, 2020. "How did COVID-19 impact air transportation? A first peek through the lens of complex networks," Journal of Air Transport Management, Elsevier, vol. 89(C).
    20. Chandra, Aitichya & Verma, Ashish & Sooraj, K.P. & Padhi, Radhakant, 2023. "Modelling and assessment of the arrival and departure process at the terminal area: A case study of Chennai international airport," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    21. Chang, Yu-Hern & Yang, Hui-Hua & Hsu, Wan-Jou, 2019. "Effects of work shifts on fatigue levels of air traffic controllers," Journal of Air Transport Management, Elsevier, vol. 76(C), pages 1-9.
    22. Ahmed Ghoniem & Farbod Farhadi, 2015. "A column generation approach for aircraft sequencing problems: a computational study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(10), pages 1717-1729, October.
    23. Artiouchine, Konstantin & Baptiste, Philippe & Dürr, Christoph, 2008. "Runway sequencing with holding patterns," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1254-1266, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ng, K.K.H. & Lee, C.K.M. & Chan, Felix T.S. & Qin, Yichen, 2017. "Robust aircraft sequencing and scheduling problem with arrival/departure delay using the min-max regret approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 115-136.
    2. Kim, Myeonghyeon & Sohn, Jeongwoong, 2022. "Passenger, airline, and policy responses to the COVID-19 crisis: The case of South Korea," Journal of Air Transport Management, Elsevier, vol. 98(C).
    3. Chen, Yuting & Fuellhart, Kurt & Grubesic, Tony H. & Zhang, Shengrun & Witlox, Frank, 2024. "An analysis of the context factors influencing the diverse response of airports to COVID-19 using panel and group regression," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    4. Ghoniem, Ahmed & Farhadi, Farbod & Reihaneh, Mohammad, 2015. "An accelerated branch-and-price algorithm for multiple-runway aircraft sequencing problems," European Journal of Operational Research, Elsevier, vol. 246(1), pages 34-43.
    5. Lieder, Alexander & Stolletz, Raik, 2016. "Scheduling aircraft take-offs and landings on interdependent and heterogeneous runways," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 167-188.
    6. Gui, Dongdong & Le, Meilong & Huang, Zhouchun & Zhang, Junfeng & D’Ariano, Andrea, 2023. "Optimal aircraft arrival scheduling with continuous descent operations in busy terminal maneuvering areas," Journal of Air Transport Management, Elsevier, vol. 107(C).
    7. Dixit, Aasheesh & Jakhar, Suresh Kumar, 2021. "Airport capacity management: A review and bibliometric analysis," Journal of Air Transport Management, Elsevier, vol. 91(C).
    8. Xue, Dabin & Liu, Zhizhao & Wang, Bing & Yang, Jian, 2021. "Impacts of COVID-19 on aircraft usage and fuel consumption: A case study on four Chinese international airports," Journal of Air Transport Management, Elsevier, vol. 95(C).
    9. Lieder, Alexander & Briskorn, Dirk & Stolletz, Raik, 2015. "A dynamic programming approach for the aircraft landing problem with aircraft classes," European Journal of Operational Research, Elsevier, vol. 243(1), pages 61-69.
    10. Salehipour, Amir, 2020. "An algorithm for single- and multiple-runway aircraft landing problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 175(C), pages 179-191.
    11. Pohl, Maximilian & Kolisch, Rainer & Schiffer, Maximilian, 2021. "Runway scheduling during winter operations," Omega, Elsevier, vol. 102(C).
    12. Marie-Sklaerder Vié & Nicolas Zufferey & Roel Leus, 2022. "Aircraft landing planning under uncertain conditions," Journal of Scheduling, Springer, vol. 25(2), pages 203-228, April.
    13. Kuo, Pei-Fen & Brawiswa Putra, I Gede & Setiawan, Faizal Azmi & Wen, Tzai-Hung & Chiu, Chui-Sheng & Sulistyah, Umroh Dian, 2022. "The impact of the COVID-19 pandemic on O-D flow and airport networks in the origin country and in Northeast Asia," Journal of Air Transport Management, Elsevier, vol. 100(C).
    14. Zhang, Junfeng & Zhao, Pengli & Zhang, Yu & Dai, Ximei & Sui, Dong, 2020. "Criteria selection and multi-objective optimization of aircraft landing problem," Journal of Air Transport Management, Elsevier, vol. 82(C).
    15. Rakesh Prakash & Jitamitra Desai & Rajesh Piplani, 2022. "An optimal data-splitting algorithm for aircraft sequencing on a single runway," Annals of Operations Research, Springer, vol. 309(2), pages 587-610, February.
    16. Dönmez, Kadir & Çetek, Cem & Kaya, Onur, 2022. "Air traffic management in parallel-point merge systems under wind uncertainties," Journal of Air Transport Management, Elsevier, vol. 104(C).
    17. Samà, Marcella & D’Ariano, Andrea & D’Ariano, Paolo & Pacciarelli, Dario, 2017. "Scheduling models for optimal aircraft traffic control at busy airports: Tardiness, priorities, equity and violations considerations," Omega, Elsevier, vol. 67(C), pages 81-98.
    18. Julia Bennell & Mohammad Mesgarpour & Chris Potts, 2013. "Airport runway scheduling," Annals of Operations Research, Springer, vol. 204(1), pages 249-270, April.
    19. Chen, Yuting & Fuellhart, Kurt & Grubesic, Tony H. & Zhang, Shengrun & Witlox, Frank, 2023. "Diverging spatiotemporal responses to COVID-19Â by airports: Evidence from China," Journal of Air Transport Management, Elsevier, vol. 113(C).
    20. Bennell, Julia A. & Mesgarpour, Mohammad & Potts, Chris N., 2017. "Dynamic scheduling of aircraft landings," European Journal of Operational Research, Elsevier, vol. 258(1), pages 315-327.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:115:y:2024:i:c:s0969699723001709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.