IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v39y2005i4p477-490.html
   My bibliography  Save this article

Decision-Aiding Methodology for the School Bus Routing and Scheduling Problem

Author

Listed:
  • M. Spada

    (EPFL—École Polytechnique Fédérale de Lausanne, Switzerland)

  • M. Bierlaire

    (EPFL—École Polytechnique Fédérale de Lausanne, Switzerland)

  • Th. M. Liebling

    (EPFL—École Polytechnique Fédérale de Lausanne, Switzerland)

Abstract

We consider the school bus routing and scheduling problem, where transportation demand is known and bus scheduling can be planned in advance. We present a comprehensive methodology designed to support the decision of practitioners. We first propose a modeling framework where the focus is on optimizing the level of service for a given number of buses, then we describe an automatic procedure generating a solution to the problem. The procedure first builds a feasible solution, which is subsequently improved using a heuristic.We analyze two important issues associated with this methodology. On the one hand, we analyze the performance of three types of heuristics both on real and synthetic data. We recommend the use of a simulated annealing technique exploring infeasible solutions, which performs slightly better than all others. More importantly, we find that the performance of all heuristics is not globally affected by the choice of the parameters. This is important from a practitioner viewpoint, because the fine-tuning of algorithm parameters is not critical for the algorithm’s performance. We have successfully applied our methods on real problems and on large-scale problems. On the other hand, we propose an interactive tool allowing the practitioner to visualize the proposed solution, to test its robustness, and to dynamically rebuild new solutions if the data of the original problem are modified.

Suggested Citation

  • M. Spada & M. Bierlaire & Th. M. Liebling, 2005. "Decision-Aiding Methodology for the School Bus Routing and Scheduling Problem," Transportation Science, INFORMS, vol. 39(4), pages 477-490, November.
  • Handle: RePEc:inm:ortrsc:v:39:y:2005:i:4:p:477-490
    DOI: 10.1287/trsc.1040.0096
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.1040.0096
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.1040.0096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. G. Clarke & J. W. Wright, 1964. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, INFORMS, vol. 12(4), pages 568-581, August.
    2. Lawrence J. Watters, 1967. "Letter to the Editor—Reduction of Integer Polynomial Programming Problems to Zero-One Linear Programming Problems," Operations Research, INFORMS, vol. 15(6), pages 1171-1174, December.
    3. Newton, Rita M. & Thomas, Warren H., 1969. "Design of school bus routes by computer," Socio-Economic Planning Sciences, Elsevier, vol. 3(1), pages 75-85, June.
    4. Lawrence D. Bodin & Lon Berman, 1979. "Routing and Scheduling of School Buses by Computer," Transportation Science, INFORMS, vol. 13(2), pages 113-129, May.
    5. Gavish, B. & Shlifer, E., 1979. "An approach for solving a class of transportation scheduling problems," European Journal of Operational Research, Elsevier, vol. 3(2), pages 122-134, March.
    6. R. D. Angel & W. L. Caudle & R. Noonan & A. Whinston, 1972. "Computer-Assisted School Bus Scheduling," Management Science, INFORMS, vol. 18(6), pages 279-288, February.
    7. Arthur J. Swersey & Wilson Ballard, 1984. "Scheduling School Buses," Management Science, INFORMS, vol. 30(7), pages 844-853, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shafahi, Ali & Wang, Zhongxiang & Haghani, Ali, 2018. "SpeedRoute: Fast, efficient solutions for school bus routing problems," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 473-493.
    2. Dimitris Bertsimas & Arthur Delarue & William Eger & John Hanlon & Sebastien Martin, 2020. "Bus Routing Optimization Helps Boston Public Schools Design Better Policies," Interfaces, INFORMS, vol. 50(1), pages 37-49, January.
    3. Wang, Zhongxiang & Haghani, Ali, 2020. "Column generation-based stochastic school bell time and bus scheduling optimization," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1087-1102.
    4. Shichao Sun & Zhengyu Duan & Qi Xu, 2018. "School bus routing problem in the stochastic and time-dependent transportation network," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-17, August.
    5. Huasheng Liu & Yuqi Zhao & Jin Li & Yu Li & Xiaowen Li & Sha Yang, 2022. "A Two-Phase, Joint-Commuting Model for Primary and Secondary Schools Considering Parking Sharing," IJERPH, MDPI, vol. 19(11), pages 1-25, May.
    6. Banerjee, Dipayan & Smilowitz, Karen, 2019. "Incorporating equity into the school bus scheduling problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 228-246.
    7. R. S. Nikolaev & D. O. Egorov, 2022. "Modeling Optimization for School Network in Conditions of Rural Depopulation (the Case of the Yelabuga District in the Republic of Tatarstan)," Regional Research of Russia, Springer, vol. 12(3), pages 395-413, September.
    8. Amanda Chu & Pinar Keskinocak & Monica C. Villarreal, 2020. "Introduction: Empowering Denver Public Schools to Optimize School Bus Operations," Interfaces, INFORMS, vol. 50(5), pages 298-312, September.
    9. Ezquerro Eguizábal, Sara & Moura Berodia, José Luis & Ibeas Portilla, Ángel & Benavente Ponce, Juan, 2018. "Optimization model for school transportation design based on economic and social efficiency," Transport Policy, Elsevier, vol. 67(C), pages 93-101.
    10. Johnes, Jill, 2015. "Operational Research in education," European Journal of Operational Research, Elsevier, vol. 243(3), pages 683-696.
    11. Park, Junhyuk & Tae, Hyunchul & Kim, Byung-In, 2012. "A post-improvement procedure for the mixed load school bus routing problem," European Journal of Operational Research, Elsevier, vol. 217(1), pages 204-213.
    12. Chen, Xinwei & Wang, Tong & Thomas, Barrett W. & Ulmer, Marlin W., 2023. "Same-day delivery with fair customer service," European Journal of Operational Research, Elsevier, vol. 308(2), pages 738-751.
    13. Ellegood, William A. & Solomon, Stanislaus & North, Jeremy & Campbell, James F., 2020. "School bus routing problem: Contemporary trends and research directions," Omega, Elsevier, vol. 95(C).
    14. Park, Junhyuk & Kim, Byung-In, 2010. "The school bus routing problem: A review," European Journal of Operational Research, Elsevier, vol. 202(2), pages 311-319, April.
    15. P. Matl & R. F. Hartl & T. Vidal, 2018. "Workload Equity in Vehicle Routing Problems: A Survey and Analysis," Transportation Science, INFORMS, vol. 52(2), pages 239-260, March.
    16. Kim, Byung-In & Kim, Seongbae & Park, Junhyuk, 2012. "A school bus scheduling problem," European Journal of Operational Research, Elsevier, vol. 218(2), pages 577-585.
    17. Perugia, Alessandro & Moccia, Luigi & Cordeau, Jean-François & Laporte, Gilbert, 2011. "Designing a home-to-work bus service in a metropolitan area," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1710-1726.
    18. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, Junhyuk & Kim, Byung-In, 2010. "The school bus routing problem: A review," European Journal of Operational Research, Elsevier, vol. 202(2), pages 311-319, April.
    2. Ellegood, William A. & Solomon, Stanislaus & North, Jeremy & Campbell, James F., 2020. "School bus routing problem: Contemporary trends and research directions," Omega, Elsevier, vol. 95(C).
    3. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.
    4. Liwei Zeng & Sunil Chopra & Karen Smilowitz, 2019. "The Covering Path Problem on a Grid," Transportation Science, INFORMS, vol. 53(6), pages 1656-1672, November.
    5. Hernan Caceres & Rajan Batta & Qing He, 2017. "School Bus Routing with Stochastic Demand and Duration Constraints," Transportation Science, INFORMS, vol. 51(4), pages 1349-1364, November.
    6. Bowerman, Robert & Hall, Brent & Calamai, Paul, 1995. "A multi-objective optimization approach to urban school bus routing: Formulation and solution method," Transportation Research Part A: Policy and Practice, Elsevier, vol. 29(2), pages 107-123, March.
    7. Fátima M. Souza Lima & Davi S. D. Pereira & Samuel V. Conceição & Ricardo S. Camargo, 2017. "A multi-objective capacitated rural school bus routing problem with heterogeneous fleet and mixed loads," 4OR, Springer, vol. 15(4), pages 359-386, December.
    8. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    9. Dasdemir, Erdi & Testik, Murat Caner & Öztürk, Diclehan Tezcaner & Şakar, Ceren Tuncer & Güleryüz, Güldal & Testik, Özlem Müge, 2022. "A multi-objective open vehicle routing problem with overbooking: Exact and heuristic solution approaches for an employee transportation problem," Omega, Elsevier, vol. 108(C).
    10. Armin Fügenschuh, 2006. "The vehicle routing problem with coupled time windows," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 14(2), pages 157-176, June.
    11. Kim, Byung-In & Kim, Seongbae & Park, Junhyuk, 2012. "A school bus scheduling problem," European Journal of Operational Research, Elsevier, vol. 218(2), pages 577-585.
    12. Schittekat, Patrick & Kinable, Joris & Sörensen, Kenneth & Sevaux, Marc & Spieksma, Frits & Springael, Johan, 2013. "A metaheuristic for the school bus routing problem with bus stop selection," European Journal of Operational Research, Elsevier, vol. 229(2), pages 518-528.
    13. Amanda Chu & Pinar Keskinocak & Monica C. Villarreal, 2020. "Introduction: Empowering Denver Public Schools to Optimize School Bus Operations," Interfaces, INFORMS, vol. 50(5), pages 298-312, September.
    14. J Faulin & A García del Valle, 2008. "Solving the capacitated vehicle routing problem using the ALGELECT electrostatic algorithm," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(12), pages 1685-1695, December.
    15. Haughton, Michael A., 1998. "The performance of route modification and demand stabilization strategies in stochastic vehicle routing," Transportation Research Part B: Methodological, Elsevier, vol. 32(8), pages 551-566, November.
    16. Gong, Manlin & Hu, Yucong & Chen, Zhiwei & Li, Xiaopeng, 2021. "Transfer-based customized modular bus system design with passenger-route assignment optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    17. Buchheim, Christoph & Crama, Yves & Rodríguez-Heck, Elisabeth, 2019. "Berge-acyclic multilinear 0–1 optimization problems," European Journal of Operational Research, Elsevier, vol. 273(1), pages 102-107.
    18. Ahmed Kheiri & Alina G. Dragomir & David Mueller & Joaquim Gromicho & Caroline Jagtenberg & Jelke J. Hoorn, 2019. "Tackling a VRP challenge to redistribute scarce equipment within time windows using metaheuristic algorithms," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 561-595, December.
    19. Smith, John Paul, 1974. "A Lockset analysis of farm to plant milk assembly," ISU General Staff Papers 1974010108000018144, Iowa State University, Department of Economics.
    20. Arpan Rijal & Marco Bijvank & Asvin Goel & René de Koster, 2021. "Workforce Scheduling with Order-Picking Assignments in Distribution Facilities," Transportation Science, INFORMS, vol. 55(3), pages 725-746, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:39:y:2005:i:4:p:477-490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.