IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v38y2004i1p33-41.html
   My bibliography  Save this article

Allocation of Railway Rolling Stock for Passenger Trains

Author

Listed:
  • Erwin Abbink

    (NS Reizigers, Department of Logistics, Utrecht, The Netherlands)

  • Bianca van den Berg

    (Cap Gemini Ernst & Young, Utrecht, The Netherlands)

  • Leo Kroon

    (NS Reizigers, Department of Logistics, Utrecht, The Netherlands, and Rotterdam School of Management, Erasmus University Rotterdam, Rotterdam, The Netherlands)

  • Marc Salomon

    (Department of Economics and Econometrics, Tilburg University, Tilburg, The Netherlands, and McKinsey & Company, Amsterdam, The Netherlands)

Abstract

For a commercially operating railway company, providing a high level of service for the passengers is of utmost importance. The latter requires high punctuality of the trains and an adequate rolling stock capacity. Unfortunately, the latter is currently (in 2002) one of the bottlenecks in the service provision by the main Dutch railway operator NS Reizigers. Especially during the morning rush hours, many passengers cannot be transported according to the usual service standards because of a shortage of the rolling stock capacity. On the other hand, a more effective allocation of the available rolling stock capacity seems to be feasible, because there are also several trains with some slack capacity.The effectiveness of the rolling stock capacity is determined mainly by the allocation of the train types and subtypes to the lines. Therefore, we describe in this paper a model that can be used to find an optimal allocation of train types and subtypes to the lines. This optimal allocation is more effective than the manually planned one, which is accomplished by minimizing the shortages of capacity during the rush hours.The model is implemented in the modeling language OPL Studio 3.1, solved by CPLEX 7.0, and tested on several scenarios based on the 2001–2002 timetable of NS Reizigers. The results of the model were received positively, both by the planners and by the management in practice, because these results showed that a significant service improvement over the manually planned allocation can be achieved within a shorter throughput time of the involved part of the planning process.

Suggested Citation

  • Erwin Abbink & Bianca van den Berg & Leo Kroon & Marc Salomon, 2004. "Allocation of Railway Rolling Stock for Passenger Trains," Transportation Science, INFORMS, vol. 38(1), pages 33-41, February.
  • Handle: RePEc:inm:ortrsc:v:38:y:2004:i:1:p:33-41
    DOI: 10.1287/trsc.1030.0044
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.1030.0044
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.1030.0044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jean-François Cordeau & Paolo Toth & Daniele Vigo, 1998. "A Survey of Optimization Models for Train Routing and Scheduling," Transportation Science, INFORMS, vol. 32(4), pages 380-404, November.
    2. Nejib Ben-Khedher & Josephine Kintanar & Cecile Queille & William Stripling, 1998. "Schedule Optimization at SNCF: From Conception to Day of Departure," Interfaces, INFORMS, vol. 28(1), pages 6-23, February.
    3. Jean-François Cordeau & François Soumis & Jacques Desrosiers, 2001. "Simultaneous Assignment of Locomotives and Cars to Passenger Trains," Operations Research, INFORMS, vol. 49(4), pages 531-548, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xueqiao Yu & Maoxiang Lang & Wenhui Zhang & Shiqi Li & Mingyue Zhang & Xiao Yu, 2019. "An Empirical Study on the Comprehensive Optimization Method of a Train Diagram of the China High Speed Railway Express," Sustainability, MDPI, vol. 11(7), pages 1-30, April.
    2. Yu Zhou & Leishan Zhou & Yun Wang & Zhuo Yang & Jiawei Wu, 2017. "Application of Multiple-Population Genetic Algorithm in Optimizing the Train-Set Circulation Plan Problem," Complexity, Hindawi, vol. 2017, pages 1-14, July.
    3. Lin, Boliang & Zhao, Yinan, 2021. "Synchronized optimization of EMU train assignment and second-level preventive maintenance scheduling," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    4. Yu Zhou & Leishan Zhou & Yun Wang & Xiaomeng Li & Zhuo Yang, 2017. "A practical model for the train-set utilization: The case of Beijing-Tianjin passenger dedicated line in China," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-24, May.
    5. Lusby, Richard M. & Haahr, Jørgen Thorlund & Larsen, Jesper & Pisinger, David, 2017. "A Branch-and-Price algorithm for railway rolling stock rescheduling," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 228-250.
    6. Hoogervorst, R. & Dollevoet, T.A.B. & Maróti, G. & Huisman, D., 2018. "Reducing Passenger Delays by Rolling Stock Rescheduling," Econometric Institute Research Papers EI2018-29, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. E. Ursavas & Stuart X. Zhu, 2018. "Integrated Passenger and Freight Train Planning on Shared-Use Corridors," Service Science, INFORMS, vol. 52(6), pages 1376-1390, December.
    8. Zhong, Qingwei & Lusby, Richard M. & Larsen, Jesper & Zhang, Yongxiang & Peng, Qiyuan, 2019. "Rolling stock scheduling with maintenance requirements at the Chinese High-Speed Railway," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 24-44.
    9. Maarten L. Trap & Dennis Huisman & Rob M. P. Goverde, 2017. "Assessment of alternative line plans for severe winter conditions in the Netherlands," Public Transport, Springer, vol. 9(1), pages 55-71, July.
    10. Canca, David & Barrena, Eva, 2018. "The integrated rolling stock circulation and depot location problem in railway rapid transit systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 115-138.
    11. Lusby, Richard M. & Larsen, Jesper & Bull, Simon, 2018. "A survey on robustness in railway planning," European Journal of Operational Research, Elsevier, vol. 266(1), pages 1-15.
    12. Valentina Cacchiani & Alberto Caprara & Paolo Toth, 2019. "An Effective Peak Period Heuristic for Railway Rolling Stock Planning," Transportation Science, INFORMS, vol. 53(3), pages 746-762, May.
    13. Wenliang Zhou & Mehdi Oldache, 2021. "Integrated Optimization of Line Planning, Timetabling and Rolling Stock Allocation for Urban Railway Lines," Sustainability, MDPI, vol. 13(23), pages 1-32, November.
    14. Wang, Entai & Yang, Lixing & Yin, Jiateng & Zhang, Jinlei & Gao, Ziyou, 2024. "Passenger-oriented rolling stock scheduling in the metro system with multiple depots: Network flow based approaches," Transportation Research Part B: Methodological, Elsevier, vol. 180(C).
    15. Fioole, Pieter-Jan & Kroon, Leo & Maroti, Gabor & Schrijver, Alexander, 2006. "A rolling stock circulation model for combining and splitting of passenger trains," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1281-1297, October.
    16. Yang, Lin & Gao, Yuan & D’Ariano, Andrea & Xu, Suxiu, 2024. "Integrated optimization of train timetable and train unit circulation for a Y-type urban rail transit system with flexible train composition mode," Omega, Elsevier, vol. 122(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dennis Huisman & Leo G. Kroon & Ramon M. Lentink & Michiel J. C. M. Vromans, 2005. "Operations Research in passenger railway transportation," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 59(4), pages 467-497, November.
    2. Abbink, E. & van den Berg, B. & Kroon, L.G. & Salomon, M., 2002. "Allocation of Railway Rolling Stock for Passenger Trains," Other publications TiSEM 9d73e0e8-2463-4694-b85b-4, Tilburg University, School of Economics and Management.
    3. Ruf, Moritz & Cordeau, Jean-François, 2021. "Adaptive large neighborhood search for integrated planning in railroad classification yards," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 26-51.
    4. Hassini, Elkafi & Verma, Manish, 2016. "Disruption risk management in railroad networks: An optimization-based methodology and a case studyAuthor-Name: Azad, Nader," Transportation Research Part B: Methodological, Elsevier, vol. 85(C), pages 70-88.
    5. Camilo Ortiz-Astorquiza & Jean-François Cordeau & Emma Frejinger, 2021. "The Locomotive Assignment Problem with Distributed Power at the Canadian National Railway Company," Transportation Science, INFORMS, vol. 55(2), pages 510-531, March.
    6. Lusby, Richard M. & Haahr, Jørgen Thorlund & Larsen, Jesper & Pisinger, David, 2017. "A Branch-and-Price algorithm for railway rolling stock rescheduling," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 228-250.
    7. Arianna Alfieri & Rutger Groot & Leo Kroon & Alexander Schrijver, 2006. "Efficient Circulation of Railway Rolling Stock," Transportation Science, INFORMS, vol. 40(3), pages 378-391, August.
    8. van den Berg, B.W.V. & Kroon, L.G. & Salomon, M. & Abbink, E.J.W., 2002. "Allocation of Railway Rolling Stock for Passenger Trains," ERIM Report Series Research in Management ERS-2002-47-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    9. Frisch, Sarah & Hungerländer, Philipp & Jellen, Anna & Primas, Bernhard & Steininger, Sebastian & Weinberger, Dominic, 2021. "Solving a real-world Locomotive Scheduling Problem with Maintenance Constraints," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 386-409.
    10. Scheffler, Martin & Neufeld, Janis S. & Hölscher, Michael, 2020. "An MIP-based heuristic solution approach for the locomotive assignment problem focussing on (dis-)connecting processes," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 64-80.
    11. Valentina Cacchiani & Alberto Caprara & Paolo Toth, 2019. "An Effective Peak Period Heuristic for Railway Rolling Stock Planning," Transportation Science, INFORMS, vol. 53(3), pages 746-762, May.
    12. Belgacem Bouzaiene-Ayari & Clark Cheng & Sourav Das & Ricardo Fiorillo & Warren B. Powell, 2016. "From Single Commodity to Multiattribute Models for Locomotive Optimization: A Comparison of Optimal Integer Programming and Approximate Dynamic Programming," Transportation Science, INFORMS, vol. 50(2), pages 366-389, May.
    13. Abbink, E. & van den Berg, B. & Kroon, L.G. & Salomon, M., 2002. "Allocation of Railway Rolling Stock for Passenger Trains," Discussion Paper 2002-43, Tilburg University, Center for Economic Research.
    14. J. Macías-Guarasa & R. San-Segundo & J.M. Montero & J. Ferreiros & R. Córdoba & F. Fernández & L.F. D'Haro & J.M. Pardo, 2005. "Adapting a Search Algorithm for the Spanish Railway Network," Transportation Planning and Technology, Taylor & Francis Journals, vol. 29(1), pages 25-42, December.
    15. Fioole, Pieter-Jan & Kroon, Leo & Maroti, Gabor & Schrijver, Alexander, 2006. "A rolling stock circulation model for combining and splitting of passenger trains," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1281-1297, October.
    16. Xu, Xiaoming & Li, Chung-Lun & Xu, Zhou, 2018. "Integrated train timetabling and locomotive assignment," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 573-593.
    17. Alexander Armstrong & Joern Meissner, 2010. "Railway Revenue Management: Overview and Models (Operations Research)," Working Papers MRG/0019, Department of Management Science, Lancaster University, revised Jul 2010.
    18. Peeters, M. & Kroon, L.G., 2003. "Circulation of Railway Rolling Stock: A Branch-and-Price Approach," ERIM Report Series Research in Management ERS-2003-055-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    19. Kroon, L.G. & Zuidwijk, R.A., 2003. "Mathematical models for planning support," ERIM Report Series Research in Management ERS-2003-032-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    20. Hoogervorst, R. & Dollevoet, T.A.B. & Maróti, G. & Huisman, D., 2018. "Reducing Passenger Delays by Rolling Stock Rescheduling," Econometric Institute Research Papers EI2018-29, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:38:y:2004:i:1:p:33-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.