IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i23p13059-d687891.html
   My bibliography  Save this article

Integrated Optimization of Line Planning, Timetabling and Rolling Stock Allocation for Urban Railway Lines

Author

Listed:
  • Wenliang Zhou

    (School of Traffic and Transportation, Central South University, Changsha 410075, China)

  • Mehdi Oldache

    (School of Traffic and Transportation, Central South University, Changsha 410075, China)

Abstract

In order to improve train operation planning from the two perspectives of enterprise operating costs and passengers’ travel time, this paper proposes an integrated optimization model of three sub-problems, namely line planning, timetabling and rolling stock allocation for urban railway transit lines based on passengers’ travelling demands and the constraints of the urban rail line. The model features dwelling time at stations, turnaround operations at terminal stations, entering/exiting depot operations and an assignment for passengers’ travelling flow. We propose a solution method based on a metaheuristic method that simulates annealing to generate an optimal solution for the overall problem using MATLAB. Finally, we use the example of Xi’an metro line one to demonstrate the performance of the model.

Suggested Citation

  • Wenliang Zhou & Mehdi Oldache, 2021. "Integrated Optimization of Line Planning, Timetabling and Rolling Stock Allocation for Urban Railway Lines," Sustainability, MDPI, vol. 13(23), pages 1-32, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:23:p:13059-:d:687891
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/23/13059/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/23/13059/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mathias Michaelis & Anita Schöbel, 2009. "Integrating line planning, timetabling, and vehicle scheduling: a customer-oriented heuristic," Public Transport, Springer, vol. 1(3), pages 211-232, August.
    2. Arianna Alfieri & Rutger Groot & Leo Kroon & Alexander Schrijver, 2006. "Efficient Circulation of Railway Rolling Stock," Transportation Science, INFORMS, vol. 40(3), pages 378-391, August.
    3. Huanyin Su & Wencong Tao & Xinlei Hu, 2019. "A Line Planning Approach for High-Speed Rail Networks with Time-Dependent Demand and Capacity Constraints," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-18, March.
    4. Bussieck, Michael R. & Kreuzer, Peter & Zimmermann, Uwe T., 1997. "Optimal lines for railway systems," European Journal of Operational Research, Elsevier, vol. 96(1), pages 54-63, January.
    5. Fioole, Pieter-Jan & Kroon, Leo & Maroti, Gabor & Schrijver, Alexander, 2006. "A rolling stock circulation model for combining and splitting of passenger trains," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1281-1297, October.
    6. Wang, Yihui & D’Ariano, Andrea & Yin, Jiateng & Meng, Lingyun & Tang, Tao & Ning, Bin, 2018. "Passenger demand oriented train scheduling and rolling stock circulation planning for an urban rail transit line," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 193-227.
    7. Erwin Abbink & Bianca van den Berg & Leo Kroon & Marc Salomon, 2004. "Allocation of Railway Rolling Stock for Passenger Trains," Transportation Science, INFORMS, vol. 38(1), pages 33-41, February.
    8. Hanne L. Petersen & Allan Larsen & Oli B. G. Madsen & Bjørn Petersen & Stefan Ropke, 2013. "The Simultaneous Vehicle Scheduling and Passenger Service Problem," Transportation Science, INFORMS, vol. 47(4), pages 603-616, November.
    9. Mitra Heidari & Seyyed-Mahdi Hosseini-Motlagh & Nariman Nikoo, 2020. "A subway planning bi-objective multi-period optimization model integrating timetabling and vehicle scheduling: a case study of Tehran," Transportation, Springer, vol. 47(1), pages 417-443, February.
    10. Claessens, M. T. & van Dijk, N. M. & Zwaneveld, P. J., 1998. "Cost optimal allocation of rail passenger lines," European Journal of Operational Research, Elsevier, vol. 110(3), pages 474-489, November.
    11. Wang, Yihui & Tang, Tao & Ning, Bin & Meng, Lingyun, 2017. "Integrated optimization of regular train schedule and train circulation plan for urban rail transit lines," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 83-104.
    12. Ibarra-Rojas, Omar J. & Giesen, Ricardo & Rios-Solis, Yasmin A., 2014. "An integrated approach for timetabling and vehicle scheduling problems to analyze the trade-off between level of service and operating costs of transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 35-46.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yidong Wang & Rui Song & Shiwei He & Zilong Song, 2022. "Train Routing and Track Allocation Optimization Model of Multi-Station High-Speed Railway Hub," Sustainability, MDPI, vol. 14(12), pages 1-21, June.
    2. Manuel Blanco-Castillo & Adrián Fernández-Rodríguez & Antonio Fernández-Cardador & Asunción P. Cucala, 2022. "Eco-Driving in Railway Lines Considering the Uncertainty Associated with Climatological Conditions," Sustainability, MDPI, vol. 14(14), pages 1-26, July.
    3. Maosheng Li & Hangcong Li, 2022. "Optimal Design of Subway Train Cross-Line Operation Scheme Based on Passenger Smart Card Data," Sustainability, MDPI, vol. 14(11), pages 1-17, May.
    4. Gonzalo Sánchez-Contreras & Adrián Fernández-Rodríguez & Antonio Fernández-Cardador & Asunción P. Cucala, 2023. "A Two-Level Fuzzy Multi-Objective Design of ATO Driving Commands for Energy-Efficient Operation of Metropolitan Railway Lines," Sustainability, MDPI, vol. 15(12), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan Shang & Yu Yao & Liya Yang & Lingyun Meng & Pengli Mo, 2021. "Integrated Model for Timetabling and Circulation Planning on an Urban Rail Transit Line: a Coupled Network-Based Flow Formulation," Networks and Spatial Economics, Springer, vol. 21(2), pages 331-364, June.
    2. Yang, Lin & Gao, Yuan & D’Ariano, Andrea & Xu, Suxiu, 2024. "Integrated optimization of train timetable and train unit circulation for a Y-type urban rail transit system with flexible train composition mode," Omega, Elsevier, vol. 122(C).
    3. Wang, Yihui & Zhao, Kangqi & D’Ariano, Andrea & Niu, Ru & Li, Shukai & Luan, Xiaojie, 2021. "Real-time integrated train rescheduling and rolling stock circulation planning for a metro line under disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 87-117.
    4. Zhao, Yaqiong & Li, Dewei & Yin, Yonghao & Zhao, Xiaoli, 2023. "Integrated optimization of demand-driven timetable, train formation plan and rolling stock circulation with variable running times and dwell times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    5. Hoogervorst, R. & Dollevoet, T.A.B. & Maróti, G. & Huisman, D., 2018. "Reducing Passenger Delays by Rolling Stock Rescheduling," Econometric Institute Research Papers EI2018-29, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. Canca, David & Barrena, Eva, 2018. "The integrated rolling stock circulation and depot location problem in railway rapid transit systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 115-138.
    7. Lin, Boliang & Zhao, Yinan, 2021. "Synchronized optimization of EMU train assignment and second-level preventive maintenance scheduling," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    8. Mo, Pengli & D’Ariano, Andrea & Yang, Lixing & Veelenturf, Lucas P. & Gao, Ziyou, 2021. "An exact method for the integrated optimization of subway lines operation strategies with asymmetric passenger demand and operating costs," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 283-321.
    9. Xueqiao Yu & Maoxiang Lang & Wenhui Zhang & Shiqi Li & Mingyue Zhang & Xiao Yu, 2019. "An Empirical Study on the Comprehensive Optimization Method of a Train Diagram of the China High Speed Railway Express," Sustainability, MDPI, vol. 11(7), pages 1-30, April.
    10. Yu Zhou & Leishan Zhou & Yun Wang & Zhuo Yang & Jiawei Wu, 2017. "Application of Multiple-Population Genetic Algorithm in Optimizing the Train-Set Circulation Plan Problem," Complexity, Hindawi, vol. 2017, pages 1-14, July.
    11. Zhong, Qingwei & Lusby, Richard M. & Larsen, Jesper & Zhang, Yongxiang & Peng, Qiyuan, 2019. "Rolling stock scheduling with maintenance requirements at the Chinese High-Speed Railway," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 24-44.
    12. Lusby, Richard M. & Haahr, Jørgen Thorlund & Larsen, Jesper & Pisinger, David, 2017. "A Branch-and-Price algorithm for railway rolling stock rescheduling," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 228-250.
    13. Wang, Hongyang & Yang, Lixing & Zhang, Jinlei & Luo, Qin & Fan, Zhongsheng, 2024. "Real-time train timetabling with virtual coupling operations on a Y-type metro line," European Journal of Operational Research, Elsevier, vol. 319(1), pages 168-190.
    14. Valentina Cacchiani & Alberto Caprara & Paolo Toth, 2019. "An Effective Peak Period Heuristic for Railway Rolling Stock Planning," Transportation Science, INFORMS, vol. 53(3), pages 746-762, May.
    15. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.
    16. Wang, Entai & Yang, Lixing & Yin, Jiateng & Zhang, Jinlei & Gao, Ziyou, 2024. "Passenger-oriented rolling stock scheduling in the metro system with multiple depots: Network flow based approaches," Transportation Research Part B: Methodological, Elsevier, vol. 180(C).
    17. Zhou, Housheng & Qi, Jianguo & Yang, Lixing & Shi, Jungang & Pan, Hanchuan & Gao, Yuan, 2022. "Joint optimization of train timetabling and rolling stock circulation planning: A novel flexible train composition mode," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 352-385.
    18. Gao, Yuan & Schmidt, Marie & Yang, Lixing & Gao, Ziyou, 2020. "A branch-and-price approach for trip sequence planning of high-speed train units," Omega, Elsevier, vol. 92(C).
    19. Maarten L. Trap & Dennis Huisman & Rob M. P. Goverde, 2017. "Assessment of alternative line plans for severe winter conditions in the Netherlands," Public Transport, Springer, vol. 9(1), pages 55-71, July.
    20. Lusby, Richard M. & Larsen, Jesper & Bull, Simon, 2018. "A survey on robustness in railway planning," European Journal of Operational Research, Elsevier, vol. 266(1), pages 1-15.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:23:p:13059-:d:687891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.