IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v64y2016i2p495-509.html
   My bibliography  Save this article

Simulation of Tempered Stable Lévy Bridges and Its Applications

Author

Listed:
  • Kyoung-Kuk Kim

    (Department of Industrial and Systems Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea)

  • Sojung Kim

    (Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea)

Abstract

We consider tempered stable Lévy subordinators and develop a bridge sampling method. An approximate conditional probability density function (PDF) given the terminal values is derived with stable index less than one, using the double saddlepoint approximation. We then propose an acceptance-rejection algorithm based on the existing gamma bridge and the inverse Gaussian bridge as proposal densities. Its performance is comparable to existing sequential sampling methods such as Devroye (2009) [Devroye L (2009) Random variate generation for exponentially and ploynomially tilted stable distributions. ACM Trans. Modeling Comput. Simulation 19(4):18:1–20.] and Hofert (2011) [Hofert M (2011) Sampling exponentially tilted stable distributions. ACM Trans. Modeling Comput. Simulation 22(1):3:1–11.] when generating a fixed number of observations. As applications, we consider option pricing problems in Lévy models. First, we demonstrate the effectiveness of bridge sampling when combined with adaptive sampling under finite-variance CGMY processes. Second, further efficiency gain is achieved in terms of variance reduction via stratified sampling.

Suggested Citation

  • Kyoung-Kuk Kim & Sojung Kim, 2016. "Simulation of Tempered Stable Lévy Bridges and Its Applications," Operations Research, INFORMS, vol. 64(2), pages 495-509, April.
  • Handle: RePEc:inm:oropre:v:64:y:2016:i:2:p:495-509
    DOI: 10.1287/opre.2016.1477
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2016.1477
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2016.1477?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jos'e E. Figueroa-L'opez & Peter Tankov, 2012. "Small-time asymptotics of stopped L\'evy bridges and simulation schemes with controlled bias," Papers 1203.2355, arXiv.org, revised Jul 2014.
    2. Paul Glasserman & Zongjian Liu, 2010. "Sensitivity Estimates from Characteristic Functions," Operations Research, INFORMS, vol. 58(6), pages 1611-1623, December.
    3. Jérémy Poirot & Peter Tankov, 2006. "Monte Carlo Option Pricing for Tempered Stable (CGMY) Processes," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(4), pages 327-344, December.
    4. Athanassios N. Avramidis & Pierre L'Ecuyer, 2006. "Efficient Monte Carlo and Quasi-Monte Carlo Option Pricing Under the Variance Gamma Model," Management Science, INFORMS, vol. 52(12), pages 1930-1944, December.
    5. Amir Dembo & Jean-Dominique Deuschel & Darrell Duffie, 2004. "Large portfolio losses," Finance and Stochastics, Springer, vol. 8(1), pages 3-16, January.
    6. Glasserman, Paul & Kim, Kyoung-Kuk, 2009. "Saddlepoint approximations for affine jump-diffusion models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 15-36, January.
    7. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 335-338, July.
    8. Lin, Ming & Chen, Rong & Mykland, Per, 2010. "On Generating Monte Carlo Samples of Continuous Diffusion Bridges," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 820-838.
    9. Gordy, Michael B., 2002. "Saddlepoint approximation of CreditRisk+," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1335-1353, July.
    10. Nick Webber & Claudia Ribeiro, 2003. "A Monte Carlo Method for the Normal Inverse Gaussian Option Valuation Model using an Inverse Gaussian Bridge," Computing in Economics and Finance 2003 5, Society for Computational Economics.
    11. Peter Carr & Hélyette Geman & Dilip Madan & Marc Yor, 2005. "Pricing options on realized variance," Finance and Stochastics, Springer, vol. 9(4), pages 453-475, October.
    12. Alexandros Beskos & Omiros Papaspiliopoulos & Gareth O. Roberts & Paul Fearnhead, 2006. "Exact and computationally efficient likelihood‐based estimation for discretely observed diffusion processes (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 333-382, June.
    13. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 297-316, July.
    14. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Calzolari, Giorgio & Halbleib, Roxana, 2018. "Estimating stable latent factor models by indirect inference," Journal of Econometrics, Elsevier, vol. 205(1), pages 280-301.
    2. Zang, Xin & Jiang, Fan & Xia, Chenxi & Yang, Jingping, 2024. "Random distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 51-73.
    3. Chengwei Zhang & Zhiyuan Zhang, 2018. "Sequential sampling for CGMY processes via decomposition of their time changes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(6-7), pages 522-534, September.
    4. Dassios, Angelos & Qu, Yan & Zhao, Hongbiao, 2018. "Exact simulation for a class of tempered stable," LSE Research Online Documents on Economics 86981, London School of Economics and Political Science, LSE Library.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mogens Bladt & Samuel Finch & Michael Sørensen, 2016. "Simulation of multivariate diffusion bridges," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 343-369, March.
    2. Varughese, Melvin M., 2013. "Parameter estimation for multivariate diffusion systems," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 417-428.
    3. Osnat Stramer & Jun Yan, 2007. "Asymptotics of an Efficient Monte Carlo Estimation for the Transition Density of Diffusion Processes," Methodology and Computing in Applied Probability, Springer, vol. 9(4), pages 483-496, December.
    4. Mengzhe Zhang & Leunglung Chan, 2016. "Saddlepoint approximations to option price in a regime-switching model," Annals of Finance, Springer, vol. 12(1), pages 55-69, February.
    5. Jorge Ignacio Gonz'alez C'azares & Aleksandar Mijatovi'c, 2021. "Monte Carlo algorithm for the extrema of tempered stable processes," Papers 2103.15310, arXiv.org, revised Dec 2022.
    6. Czellar, Veronika & Karolyi, G. Andrew & Ronchetti, Elvezio, 2007. "Indirect robust estimation of the short-term interest rate process," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 546-563, September.
    7. Golightly, A. & Wilkinson, D.J., 2008. "Bayesian inference for nonlinear multivariate diffusion models observed with error," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1674-1693, January.
    8. Eckhard Platen & Hardy Hulley, 2008. "Hedging for the Long Run," Research Paper Series 214, Quantitative Finance Research Centre, University of Technology, Sydney.
    9. Quentin Clairon & Adeline Samson, 2020. "Optimal control for estimation in partially observed elliptic and hypoelliptic linear stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 105-127, April.
    10. Umberto Picchini & Andrea De Gaetano & Susanne Ditlevsen, 2010. "Stochastic Differential Mixed‐Effects Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 67-90, March.
    11. Kalogeropoulos, Konstantinos, 2007. "Likelihood-based inference for a class of multivariate diffusions with unobserved paths," LSE Research Online Documents on Economics 31423, London School of Economics and Political Science, LSE Library.
    12. Kalogeropoulos, Konstantinos & Dellaportas, Petros & Roberts, Gareth O., 2007. "Likelihood-based inference for correlated diffusions," MPRA Paper 5696, University Library of Munich, Germany.
    13. Bin Zhu & Peter X.-K. Song & Jeremy M.G. Taylor, 2011. "Stochastic Functional Data Analysis: A Diffusion Model-Based Approach," Biometrics, The International Biometric Society, vol. 67(4), pages 1295-1304, December.
    14. Konstantinos Kalogeropoulos & Gareth O. Roberts & Petros Dellaportas, 2007. "Inference for stochastic volatility models using time change transformations," Papers 0711.1594, arXiv.org.
    15. Eva María Ramos-Ábalos & Ramón Gutiérrez-Sánchez & Ahmed Nafidi, 2020. "Powers of the Stochastic Gompertz and Lognormal Diffusion Processes, Statistical Inference and Simulation," Mathematics, MDPI, vol. 8(4), pages 1-13, April.
    16. Michael Sørensen, 2008. "Parametric inference for discretely sampled stochastic differential equations," CREATES Research Papers 2008-18, Department of Economics and Business Economics, Aarhus University.
    17. Paul Fearnhead & Vasilieos Giagos & Chris Sherlock, 2014. "Inference for reaction networks using the linear noise approximation," Biometrics, The International Biometric Society, vol. 70(2), pages 457-466, June.
    18. Kevin W. Lu & Phillip J. Paine & Simon P. Preston & Andrew T. A. Wood, 2022. "Approximate maximum likelihood estimation for one‐dimensional diffusions observed on a fine grid," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1085-1114, September.
    19. Paul Fearnhead & Omiros Papaspiliopoulos & Gareth O. Roberts, 2008. "Particle filters for partially observed diffusions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 755-777, September.
    20. Beskos, Alexandros & Kalogeropoulos, Konstantinos & Pazos, Erik, 2013. "Advanced MCMC methods for sampling on diffusion pathspace," Stochastic Processes and their Applications, Elsevier, vol. 123(4), pages 1415-1453.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:64:y:2016:i:2:p:495-509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.