IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v63y2015i1p65-85.html
   My bibliography  Save this article

The Post-Disaster Debris Clearance Problem Under Incomplete Information

Author

Listed:
  • Melih Çelik

    (Department of Industrial Engineering, Middle East Technical University, Ankara 06800, Turkey)

  • Özlem Ergun

    (Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115)

  • Pınar Keskinocak

    (H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

Abstract

Debris management is one of the most time consuming and complicated activities among post-disaster operations. Debris clearance is aimed at pushing the debris to the sides of the roads so that relief distribution and search-and-rescue operations can be maintained in a timely manner. Given the limited resources, uncertainty, and urgency during disaster response, efficient and effective planning of debris clearance to achieve connectivity between relief demand and supply is important. In this paper, we define the stochastic debris clearance problem (SDCP), which captures post-disaster situations where the limited information on the debris amounts along the roads is updated as clearance activities proceed. The main decision in SDCP is to determine a sequence of roads to clear in each period such that benefit accrued by satisfying relief demand is maximized. To solve SDCP to optimality, we develop a partially observable Markov decision process model. We then propose a heuristic based on a continuous-time approximation, and we further reduce the computational burden by applying a limited look ahead on the search tree and heuristic pruning. The performance of these approaches is tested on randomly generated instances that reflect various geographical and information settings, and instances based on a real-world earthquake scenario. The results of these experiments underline the importance of applying a stochastic approach and indicate significant improvements over heuristics that mimic the current practice for debris clearance.

Suggested Citation

  • Melih Çelik & Özlem Ergun & Pınar Keskinocak, 2015. "The Post-Disaster Debris Clearance Problem Under Incomplete Information," Operations Research, INFORMS, vol. 63(1), pages 65-85, February.
  • Handle: RePEc:inm:oropre:v:63:y:2015:i:1:p:65-85
    DOI: 10.1287/opre.2014.1342
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2014.1342
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2014.1342?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carlos F. Daganzo, 1987. "Modeling Distribution Problems with Time Windows. Part II: Two Customer Types," Transportation Science, INFORMS, vol. 21(3), pages 180-187, August.
    2. Patrick Jaillet & Michael R. Wagner, 2006. "Online Routing Problems: Value of Advanced Information as Improved Competitive Ratios," Transportation Science, INFORMS, vol. 40(2), pages 200-210, May.
    3. Baxter, Matthew & Elgindy, Tarek & Ernst, Andreas T. & Kalinowski, Thomas & Savelsbergh, Martin W.P., 2014. "Incremental network design with shortest paths," European Journal of Operational Research, Elsevier, vol. 238(3), pages 675-684.
    4. Nurre, Sarah G. & Cavdaroglu, Burak & Mitchell, John E. & Sharkey, Thomas C. & Wallace, William A., 2012. "Restoring infrastructure systems: An integrated network design and scheduling (INDS) problem," European Journal of Operational Research, Elsevier, vol. 223(3), pages 794-806.
    5. Caunhye, Aakil M. & Nie, Xiaofeng & Pokharel, Shaligram, 2012. "Optimization models in emergency logistics: A literature review," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 4-13.
    6. Francis, Peter & Smilowitz, Karen, 2006. "Modeling techniques for periodic vehicle routing problems," Transportation Research Part B: Methodological, Elsevier, vol. 40(10), pages 872-884, December.
    7. Carlos F. Daganzo, 1987. "Modeling Distribution Problems with Time Windows: Part I," Transportation Science, INFORMS, vol. 21(3), pages 171-179, August.
    8. Nathalie Perrier & André Langevin & Ciro-Alberto Amaya, 2008. "Vehicle Routing for Urban Snow Plowing Operations," Transportation Science, INFORMS, vol. 42(1), pages 44-56, February.
    9. Ilya O. Ryzhov & Warren B. Powell, 2011. "Information Collection on a Graph," Operations Research, INFORMS, vol. 59(1), pages 188-201, February.
    10. Igor Averbakh & Jordi Pereira, 2012. "The flowtime network construction problem," IISE Transactions, Taylor & Francis Journals, vol. 44(8), pages 681-694.
    11. Patrick Jaillet & Michael R. Wagner, 2008. "Generalized Online Routing: New Competitive Ratios, Resource Augmentation, and Asymptotic Analyses," Operations Research, INFORMS, vol. 56(3), pages 745-757, June.
    12. Timothy Matisziw & Alan Murray & Tony Grubesic, 2010. "Strategic Network Restoration," Networks and Spatial Economics, Springer, vol. 10(3), pages 345-361, September.
    13. Carlos F. Daganzo, 1984. "The Distance Traveled to Visit N Points with a Maximum of C Stops per Vehicle: An Analytic Model and an Application," Transportation Science, INFORMS, vol. 18(4), pages 331-350, November.
    14. Hongsheng Zhong & Randolph W. Hall & Maged Dessouky, 2007. "Territory Planning and Vehicle Dispatching with Driver Learning," Transportation Science, INFORMS, vol. 41(1), pages 74-89, February.
    15. Pascal Hentenryck & Russell Bent & Eli Upfal, 2010. "Online stochastic optimization under time constraints," Annals of Operations Research, Springer, vol. 177(1), pages 151-183, June.
    16. Altay, Nezih & Green III, Walter G., 2006. "OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 175(1), pages 475-493, November.
    17. del Castillo, Jose M., 1998. "A heuristic for the traveling salesman problem based on a continuous approximation," Transportation Research Part B: Methodological, Elsevier, vol. 33(2), pages 123-152, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jabali, Ola & Gendreau, Michel & Laporte, Gilbert, 2012. "A continuous approximation model for the fleet composition problem," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1591-1606.
    2. Aybike Ulusan & Ozlem Ergun, 2018. "Restoration of services in disrupted infrastructure systems: A network science approach," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-28, February.
    3. Anna Franceschetti & Ola Jabali & Gilbert Laporte, 2017. "Continuous approximation models in freight distribution management," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 413-433, October.
    4. Nihal Berktaş & Bahar Yetiş Kara & Oya Ekin Karaşan, 2016. "Solution methodologies for debris removal in disaster response," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 403-445, September.
    5. Franceschetti, Anna & Honhon, Dorothée & Laporte, Gilbert & Woensel, Tom Van & Fransoo, Jan C., 2017. "Strategic fleet planning for city logistics," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 19-40.
    6. Ni, Ni & Howell, Brendan J. & Sharkey, Thomas C., 2018. "Modeling the impact of unmet demand in supply chain resiliency planning," Omega, Elsevier, vol. 81(C), pages 1-16.
    7. Sharkey, Thomas C. & Cavdaroglu, Burak & Nguyen, Huy & Holman, Jonathan & Mitchell, John E. & Wallace, William A., 2015. "Interdependent network restoration: On the value of information-sharing," European Journal of Operational Research, Elsevier, vol. 244(1), pages 309-321.
    8. Garay-Sianca, Aniela & Nurre Pinkley, Sarah G., 2021. "Interdependent integrated network design and scheduling problems with movement of machines," European Journal of Operational Research, Elsevier, vol. 289(1), pages 297-327.
    9. Sanci, Ece & Daskin, Mark S., 2019. "Integrating location and network restoration decisions in relief networks under uncertainty," European Journal of Operational Research, Elsevier, vol. 279(2), pages 335-350.
    10. Sayarshad, Hamid R. & Du, Xinpi & Gao, H. Oliver, 2020. "Dynamic post-disaster debris clearance problem with re-positioning of clearance equipment items under partially observable information," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 352-372.
    11. Averbakh, Igor & Pereira, Jordi, 2015. "Network construction problems with due dates," European Journal of Operational Research, Elsevier, vol. 244(3), pages 715-729.
    12. Zhen, Lu & Gao, Jiajing & Tan, Zheyi & Laporte, Gilbert & Baldacci, Roberto, 2023. "Territorial design for customers with demand frequency," European Journal of Operational Research, Elsevier, vol. 309(1), pages 82-101.
    13. Garrett, Richard A. & Sharkey, Thomas C. & Grabowski, Martha & Wallace, William A., 2017. "Dynamic resource allocation to support oil spill response planning for energy exploration in the Arctic," European Journal of Operational Research, Elsevier, vol. 257(1), pages 272-286.
    14. Iloglu, Suzan & Albert, Laura A., 2018. "An integrated network design and scheduling problem for network recovery and emergency response," Operations Research Perspectives, Elsevier, vol. 5(C), pages 218-231.
    15. Hongtan Sun & Thomas C. Sharkey, 2017. "Approximation guarantees of algorithms for fractional optimization problems arising in dispatching rules for INDS problems," Journal of Global Optimization, Springer, vol. 68(3), pages 623-640, July.
    16. Tianyu Wang & Igor Averbakh, 2022. "Network construction/restoration problems: cycles and complexity," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 51-73, August.
    17. Langevin, André & Mbaraga, Pontien & Campbell, James F., 1996. "Continuous approximation models in freight distribution: An overview," Transportation Research Part B: Methodological, Elsevier, vol. 30(3), pages 163-188, June.
    18. Carlsson, John Gunnar & Behroozi, Mehdi, 2017. "Worst-case demand distributions in vehicle routing," European Journal of Operational Research, Elsevier, vol. 256(2), pages 462-472.
    19. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    20. Canbilen Sütiçen, Tuğçe & Batun, Sakine & Çelik, Melih, 2023. "Integrated reinforcement and repair of interdependent infrastructure networks under disaster-related uncertainties," European Journal of Operational Research, Elsevier, vol. 308(1), pages 369-384.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:63:y:2015:i:1:p:65-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.