IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v238y2014i3p675-684.html
   My bibliography  Save this article

Incremental network design with shortest paths

Author

Listed:
  • Baxter, Matthew
  • Elgindy, Tarek
  • Ernst, Andreas T.
  • Kalinowski, Thomas
  • Savelsbergh, Martin W.P.

Abstract

We introduce a class of incremental network design problems focused on investigating the optimal choice and timing of network expansions. We concentrate on an incremental network design problem with shortest paths. We investigate structural properties of optimal solutions, show that the simplest variant is NP-hard, analyze the worst-case performance of natural greedy heuristics, derive a 4-approximation algorithm, and conduct a small computational study.

Suggested Citation

  • Baxter, Matthew & Elgindy, Tarek & Ernst, Andreas T. & Kalinowski, Thomas & Savelsbergh, Martin W.P., 2014. "Incremental network design with shortest paths," European Journal of Operational Research, Elsevier, vol. 238(3), pages 675-684.
  • Handle: RePEc:eee:ejores:v:238:y:2014:i:3:p:675-684
    DOI: 10.1016/j.ejor.2014.04.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714003440
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.04.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nurre, Sarah G. & Cavdaroglu, Burak & Mitchell, John E. & Sharkey, Thomas C. & Wallace, William A., 2012. "Restoring infrastructure systems: An integrated network design and scheduling (INDS) problem," European Journal of Operational Research, Elsevier, vol. 223(3), pages 794-806.
    2. T. L. Magnanti & R. T. Wong, 1984. "Network Design and Transportation Planning: Models and Algorithms," Transportation Science, INFORMS, vol. 18(1), pages 1-55, February.
    3. Ukkusuri, Satish V. & Patil, Gopal, 2009. "Multi-period transportation network design under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 625-642, July.
    4. Igor Averbakh & Jordi Pereira, 2012. "The flowtime network construction problem," IISE Transactions, Taylor & Francis Journals, vol. 44(8), pages 681-694.
    5. Burak Cavdaroglu & Erik Hammel & John Mitchell & Thomas Sharkey & William Wallace, 2013. "Integrating restoration and scheduling decisions for disrupted interdependent infrastructure systems," Annals of Operations Research, Springer, vol. 203(1), pages 279-294, March.
    6. Byung Kim & Wonkyu Kim & Byung Song, 2008. "Sequencing and scheduling highway network expansion using a discrete network design model," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(3), pages 621-642, September.
    7. Timothy Matisziw & Alan Murray & Tony Grubesic, 2010. "Strategic Network Restoration," Networks and Spatial Economics, Springer, vol. 10(3), pages 345-361, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ni, Ni & Howell, Brendan J. & Sharkey, Thomas C., 2018. "Modeling the impact of unmet demand in supply chain resiliency planning," Omega, Elsevier, vol. 81(C), pages 1-16.
    2. Wang, Zhuolin & You, Keyou & Song, Shiji & Zhang, Yuli, 2020. "Wasserstein distributionally robust shortest path problem," European Journal of Operational Research, Elsevier, vol. 284(1), pages 31-43.
    3. Tianyu Wang & Igor Averbakh, 2022. "Network construction/restoration problems: cycles and complexity," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 51-73, August.
    4. Averbakh, Igor & Pereira, Jordi, 2015. "Network construction problems with due dates," European Journal of Operational Research, Elsevier, vol. 244(3), pages 715-729.
    5. Hongtan Sun & Thomas C. Sharkey, 2017. "Approximation guarantees of algorithms for fractional optimization problems arising in dispatching rules for INDS problems," Journal of Global Optimization, Springer, vol. 68(3), pages 623-640, July.
    6. Aybike Ulusan & Ozlem Ergun, 2018. "Restoration of services in disrupted infrastructure systems: A network science approach," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-28, February.
    7. Natashia Boland & Thomas Kalinowski & Simranjit Kaur, 2016. "Scheduling arc shut downs in a network to maximize flow over time with a bounded number of jobs per time period," Journal of Combinatorial Optimization, Springer, vol. 32(3), pages 885-905, October.
    8. Chagas, Rosklin Juliano & Valle, Cristiano Arbex & da Cunha, Alexandre Salles, 2018. "Exact solution approaches for the Multi-period Degree Constrained Minimum Spanning Tree Problem," European Journal of Operational Research, Elsevier, vol. 271(1), pages 57-71.
    9. Garrett, Richard A. & Sharkey, Thomas C. & Grabowski, Martha & Wallace, William A., 2017. "Dynamic resource allocation to support oil spill response planning for energy exploration in the Arctic," European Journal of Operational Research, Elsevier, vol. 257(1), pages 272-286.
    10. Canbilen Sütiçen, Tuğçe & Batun, Sakine & Çelik, Melih, 2023. "Integrated reinforcement and repair of interdependent infrastructure networks under disaster-related uncertainties," European Journal of Operational Research, Elsevier, vol. 308(1), pages 369-384.
    11. Andreas Bärmann & Alexander Martin & Hanno Schülldorf, 2017. "A Decomposition Method for Multiperiod Railway Network Expansion—With a Case Study for Germany," Transportation Science, INFORMS, vol. 51(4), pages 1102-1121, November.
    12. Melih Çelik & Özlem Ergun & Pınar Keskinocak, 2015. "The Post-Disaster Debris Clearance Problem Under Incomplete Information," Operations Research, INFORMS, vol. 63(1), pages 65-85, February.
    13. Igor Averbakh & Jordi Pereira, 2018. "Lateness Minimization in Pairwise Connectivity Restoration Problems," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 522-538, August.
    14. Iloglu, Suzan & Albert, Laura A., 2018. "An integrated network design and scheduling problem for network recovery and emergency response," Operations Research Perspectives, Elsevier, vol. 5(C), pages 218-231.
    15. Sayarshad, Hamid R. & Du, Xinpi & Gao, H. Oliver, 2020. "Dynamic post-disaster debris clearance problem with re-positioning of clearance equipment items under partially observable information," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 352-372.
    16. Kalinowski, Thomas & Matsypura, Dmytro & Savelsbergh, Martin W.P., 2015. "Incremental network design with maximum flows," European Journal of Operational Research, Elsevier, vol. 242(1), pages 51-62.
    17. Canca, David & Andrade-Pineda, José Luis & De-Los-Santos, Alicia & González-R, Pedro Luis, 2021. "A quantitative approach for the long-term assessment of Railway Rapid Transit network construction or expansion projects," European Journal of Operational Research, Elsevier, vol. 294(2), pages 604-621.
    18. Sharkey, Thomas C. & Cavdaroglu, Burak & Nguyen, Huy & Holman, Jonathan & Mitchell, John E. & Wallace, William A., 2015. "Interdependent network restoration: On the value of information-sharing," European Journal of Operational Research, Elsevier, vol. 244(1), pages 309-321.
    19. Garay-Sianca, Aniela & Nurre Pinkley, Sarah G., 2021. "Interdependent integrated network design and scheduling problems with movement of machines," European Journal of Operational Research, Elsevier, vol. 289(1), pages 297-327.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ni, Ni & Howell, Brendan J. & Sharkey, Thomas C., 2018. "Modeling the impact of unmet demand in supply chain resiliency planning," Omega, Elsevier, vol. 81(C), pages 1-16.
    2. Aybike Ulusan & Ozlem Ergun, 2018. "Restoration of services in disrupted infrastructure systems: A network science approach," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-28, February.
    3. Garay-Sianca, Aniela & Nurre Pinkley, Sarah G., 2021. "Interdependent integrated network design and scheduling problems with movement of machines," European Journal of Operational Research, Elsevier, vol. 289(1), pages 297-327.
    4. Sanci, Ece & Daskin, Mark S., 2019. "Integrating location and network restoration decisions in relief networks under uncertainty," European Journal of Operational Research, Elsevier, vol. 279(2), pages 335-350.
    5. Kalinowski, Thomas & Matsypura, Dmytro & Savelsbergh, Martin W.P., 2015. "Incremental network design with maximum flows," European Journal of Operational Research, Elsevier, vol. 242(1), pages 51-62.
    6. Sharkey, Thomas C. & Cavdaroglu, Burak & Nguyen, Huy & Holman, Jonathan & Mitchell, John E. & Wallace, William A., 2015. "Interdependent network restoration: On the value of information-sharing," European Journal of Operational Research, Elsevier, vol. 244(1), pages 309-321.
    7. Averbakh, Igor & Pereira, Jordi, 2015. "Network construction problems with due dates," European Journal of Operational Research, Elsevier, vol. 244(3), pages 715-729.
    8. Hosseininasab, Seyyed-Mohammadreza & Shetab-Boushehri, Seyyed-Nader & Hejazi, Seyed Reza & Karimi, Hadi, 2018. "A multi-objective integrated model for selecting, scheduling, and budgeting road construction projects," European Journal of Operational Research, Elsevier, vol. 271(1), pages 262-277.
    9. Garrett, Richard A. & Sharkey, Thomas C. & Grabowski, Martha & Wallace, William A., 2017. "Dynamic resource allocation to support oil spill response planning for energy exploration in the Arctic," European Journal of Operational Research, Elsevier, vol. 257(1), pages 272-286.
    10. Canbilen Sütiçen, Tuğçe & Batun, Sakine & Çelik, Melih, 2023. "Integrated reinforcement and repair of interdependent infrastructure networks under disaster-related uncertainties," European Journal of Operational Research, Elsevier, vol. 308(1), pages 369-384.
    11. Melih Çelik & Özlem Ergun & Pınar Keskinocak, 2015. "The Post-Disaster Debris Clearance Problem Under Incomplete Information," Operations Research, INFORMS, vol. 63(1), pages 65-85, February.
    12. Hosseininasab, Seyyed-Mohammadreza & Shetab-Boushehri, Seyyed-Nader, 2015. "Integration of selecting and scheduling urban road construction projects as a time-dependent discrete network design problem," European Journal of Operational Research, Elsevier, vol. 246(3), pages 762-771.
    13. Almoghathawi, Yasser & Barker, Kash & Albert, Laura A., 2019. "Resilience-driven restoration model for interdependent infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 12-23.
    14. Andrew M. Smith & Andrés D. González & Leonardo Dueñas‐Osorio & Raissa M. D'Souza, 2020. "Interdependent Network Recovery Games," Risk Analysis, John Wiley & Sons, vol. 40(1), pages 134-152, January.
    15. Iloglu, Suzan & Albert, Laura A., 2018. "An integrated network design and scheduling problem for network recovery and emergency response," Operations Research Perspectives, Elsevier, vol. 5(C), pages 218-231.
    16. Quan Mao & Nan Li, 2018. "Assessment of the impact of interdependencies on the resilience of networked critical infrastructure systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 315-337, August.
    17. Yasser Almoghathawi & Andrés D. González & Kash Barker, 2021. "Exploring Recovery Strategies for Optimal Interdependent Infrastructure Network Resilience," Networks and Spatial Economics, Springer, vol. 21(1), pages 229-260, March.
    18. Emily A. Heath & John E. Mitchell & Thomas C. Sharkey, 2016. "Applying ranking and selection procedures to long-term mitigation for improved network restoration," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 447-481, September.
    19. Ghaneshvar Ramineni & Nafiseh Ghorbani-Renani & Kash Barker & Andrés D. González & Talayeh Razzaghi & Sridhar Radhakrishnan, 2023. "Machine learning approaches to modeling interdependent network restoration time," Environment Systems and Decisions, Springer, vol. 43(1), pages 22-35, March.
    20. Ramirez-Marquez, Jose E. & Rocco, Claudio M. & Barker, Kash & Moronta, Jose, 2018. "Quantifying the resilience of community structures in networks," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 466-474.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:238:y:2014:i:3:p:675-684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.