Information Collection on a Graph
Author
Abstract
Suggested Citation
DOI: 10.1287/opre.1100.0873
Download full text from publisher
References listed on IDEAS
- Peter Frazier & Warren Powell & Savas Dayanik, 2009. "The Knowledge-Gradient Policy for Correlated Normal Beliefs," INFORMS Journal on Computing, INFORMS, vol. 21(4), pages 599-613, November.
- Stephen E. Chick & Noah Gans, 2009. "Economic Analysis of Simulation Selection Problems," Management Science, INFORMS, vol. 55(3), pages 421-437, March.
- Stephen E. Chick & Koichiro Inoue, 2001. "New Procedures to Select the Best Simulated System Using Common Random Numbers," Management Science, INFORMS, vol. 47(8), pages 1133-1149, August.
- Stephen E. Chick & Jürgen Branke & Christian Schmidt, 2010. "Sequential Sampling to Myopically Maximize the Expected Value of Information," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 71-80, February.
- Bruce Schmeiser, 1982. "Batch Size Effects in the Analysis of Simulation Output," Operations Research, INFORMS, vol. 30(3), pages 556-568, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Daniel R. Jiang & Warren B. Powell, 2018. "Risk-Averse Approximate Dynamic Programming with Quantile-Based Risk Measures," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 554-579, May.
- Susan Jia Xu & Mehdi Nourinejad & Xuebo Lai & Joseph Y. J. Chow, 2018. "Network Learning via Multiagent Inverse Transportation Problems," Service Science, INFORMS, vol. 52(6), pages 1347-1364, December.
- Ilya O. Ryzhov, 2016. "On the Convergence Rates of Expected Improvement Methods," Operations Research, INFORMS, vol. 64(6), pages 1515-1528, December.
- Melih Çelik & Özlem Ergun & Pınar Keskinocak, 2015. "The Post-Disaster Debris Clearance Problem Under Incomplete Information," Operations Research, INFORMS, vol. 63(1), pages 65-85, February.
- Ilya O. Ryzhov & Warren B. Powell & Peter I. Frazier, 2012. "The Knowledge Gradient Algorithm for a General Class of Online Learning Problems," Operations Research, INFORMS, vol. 60(1), pages 180-195, February.
- Boris Defourny & Ilya O. Ryzhov & Warren B. Powell, 2015. "Optimal Information Blending with Measurements in the L 2 Sphere," Mathematics of Operations Research, INFORMS, vol. 40(4), pages 1060-1088, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Diana M. Negoescu & Peter I. Frazier & Warren B. Powell, 2011. "The Knowledge-Gradient Algorithm for Sequencing Experiments in Drug Discovery," INFORMS Journal on Computing, INFORMS, vol. 23(3), pages 346-363, August.
- Jing Xie & Peter I. Frazier, 2013. "Sequential Bayes-Optimal Policies for Multiple Comparisons with a Known Standard," Operations Research, INFORMS, vol. 61(5), pages 1174-1189, October.
- Powell, Warren B., 2019. "A unified framework for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 795-821.
- Eric M. Schwartz & Eric T. Bradlow & Peter S. Fader, 2017. "Customer Acquisition via Display Advertising Using Multi-Armed Bandit Experiments," Marketing Science, INFORMS, vol. 36(4), pages 500-522, July.
- Ilya O. Ryzhov & Warren B. Powell & Peter I. Frazier, 2012. "The Knowledge Gradient Algorithm for a General Class of Online Learning Problems," Operations Research, INFORMS, vol. 60(1), pages 180-195, February.
- Jack P. C. Kleijnen & Susan M. Sanchez & Thomas W. Lucas & Thomas M. Cioppa, 2005. "State-of-the-Art Review: A User’s Guide to the Brave New World of Designing Simulation Experiments," INFORMS Journal on Computing, INFORMS, vol. 17(3), pages 263-289, August.
- Weiwei Fan & L. Jeff Hong & Xiaowei Zhang, 2020. "Distributionally Robust Selection of the Best," Management Science, INFORMS, vol. 66(1), pages 190-208, January.
- Emre Barut & Warren Powell, 2014. "Optimal learning for sequential sampling with non-parametric beliefs," Journal of Global Optimization, Springer, vol. 58(3), pages 517-543, March.
- Gongbo Zhang & Yijie Peng & Jianghua Zhang & Enlu Zhou, 2023. "Asymptotically Optimal Sampling Policy for Selecting Top- m Alternatives," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1261-1285, November.
- Huashuai Qu & Ilya O. Ryzhov & Michael C. Fu & Zi Ding, 2015. "Sequential Selection with Unknown Correlation Structures," Operations Research, INFORMS, vol. 63(4), pages 931-948, August.
- Stephen E. Chick & Peter Frazier, 2012. "Sequential Sampling with Economics of Selection Procedures," Management Science, INFORMS, vol. 58(3), pages 550-569, March.
- Yijie Peng & Chun-Hung Chen & Michael C. Fu & Jian-Qiang Hu, 2016. "Dynamic Sampling Allocation and Design Selection," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 195-208, May.
- David J. Eckman & Shane G. Henderson, 2022. "Posterior-Based Stopping Rules for Bayesian Ranking-and-Selection Procedures," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1711-1728, May.
- Bin Han & Ilya O. Ryzhov & Boris Defourny, 2016. "Optimal Learning in Linear Regression with Combinatorial Feature Selection," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 721-735, November.
- Stephen E. Chick & Noah Gans & Özge Yapar, 2022. "Bayesian Sequential Learning for Clinical Trials of Multiple Correlated Medical Interventions," Management Science, INFORMS, vol. 68(7), pages 4919-4938, July.
- Daniel Russo, 2020. "Simple Bayesian Algorithms for Best-Arm Identification," Operations Research, INFORMS, vol. 68(6), pages 1625-1647, November.
- Peter I. Frazier & Warren B. Powell, 2010. "Paradoxes in Learning and the Marginal Value of Information," Decision Analysis, INFORMS, vol. 7(4), pages 378-403, December.
- Bolong Cheng & Arta Jamshidi & Warren Powell, 2015. "Optimal learning with a local parametric belief model," Journal of Global Optimization, Springer, vol. 63(2), pages 401-425, October.
- Jason R. W. Merrick, 2009. "Bayesian Simulation and Decision Analysis: An Expository Survey," Decision Analysis, INFORMS, vol. 6(4), pages 222-238, December.
- Weiwei Chen & Siyang Gao & Wenjie Chen & Jianzhong Du, 2023. "Optimizing resource allocation in service systems via simulation: A Bayesian formulation," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 65-81, January.
More about this item
Keywords
optimal learning; knowledge gradient; Bayesian learning; stochastic shortest paths; ranking and selection;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:59:y:2011:i:1:p:188-201. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.