IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v61y2013i6p1435-1449.html
   My bibliography  Save this article

Worst-Case-Expectation Approach to Optimization Under Uncertainty

Author

Listed:
  • Alexander Shapiro

    (School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

  • Wajdi Tekaya

    (Cambridge Systems Associates, Cambridge CB5 8AF, United Kingdom)

  • Murilo Pereira Soares

    (Operador Nacional do Sistema Elétrico, Rio de Janeiro, RJ 20211-160, Brazil)

  • Joari Paulo da Costa

    (Operador Nacional do Sistema Elétrico, Rio de Janeiro, RJ 20211-160, Brazil)

Abstract

In this paper we discuss multistage programming with the data process subject to uncertainty. We consider a situation where the data process can be naturally separated into two components: one can be modeled as a random process, with a specified probability distribution, and the other one can be treated from a robust (worst-case) point of view. We formulate this in a time consistent way and derive the corresponding dynamic programming equations. To solve the obtained multistage problem, we develop a variant of the stochastic dual dynamic programming method. We give a general description of the algorithm and present computational studies related to planning of the Brazilian interconnected power system.

Suggested Citation

  • Alexander Shapiro & Wajdi Tekaya & Murilo Pereira Soares & Joari Paulo da Costa, 2013. "Worst-Case-Expectation Approach to Optimization Under Uncertainty," Operations Research, INFORMS, vol. 61(6), pages 1435-1449, December.
  • Handle: RePEc:inm:oropre:v:61:y:2013:i:6:p:1435-1449
    DOI: 10.1287/opre.2013.1229
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2013.1229
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2013.1229?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shapiro, Alexander & Tekaya, Wajdi & da Costa, Joari Paulo & Soares, Murilo Pereira, 2013. "Risk neutral and risk averse Stochastic Dual Dynamic Programming method," European Journal of Operational Research, Elsevier, vol. 224(2), pages 375-391.
    2. Shapiro, Alexander, 2012. "Minimax and risk averse multistage stochastic programming," European Journal of Operational Research, Elsevier, vol. 219(3), pages 719-726.
    3. Shapiro, Alexander, 2011. "Analysis of stochastic dual dynamic programming method," European Journal of Operational Research, Elsevier, vol. 209(1), pages 63-72, February.
    4. Philpott, A.B. & de Matos, V.L., 2012. "Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion," European Journal of Operational Research, Elsevier, vol. 218(2), pages 470-483.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haodong Yu & Jie Sun & Yanjun Wang, 2021. "A time-consistent Benders decomposition method for multistage distributionally robust stochastic optimization with a scenario tree structure," Computational Optimization and Applications, Springer, vol. 79(1), pages 67-99, May.
    2. Homem-de-Mello, Tito & Pagnoncelli, Bernardo K., 2016. "Risk aversion in multistage stochastic programming: A modeling and algorithmic perspective," European Journal of Operational Research, Elsevier, vol. 249(1), pages 188-199.
    3. Angelos Georghiou & Angelos Tsoukalas & Wolfram Wiesemann, 2019. "Robust Dual Dynamic Programming," Operations Research, INFORMS, vol. 67(3), pages 813-830, May.
    4. Volker Krätschmer & Marcel Ladkau & Roger J. A. Laeven & John G. M. Schoenmakers & Mitja Stadje, 2018. "Optimal Stopping Under Uncertainty in Drift and Jump Intensity," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1177-1209, November.
    5. Wang, Fan & Zhang, Chao & Zhang, Hui & Xu, Liang, 2021. "Short-term physician rescheduling model with feature-driven demand for mental disorders outpatients," Omega, Elsevier, vol. 105(C).
    6. Borgonovo, E. & Cappelli, V. & Maccheroni, F. & Marinacci, M., 2018. "Risk analysis and decision theory: A bridge," European Journal of Operational Research, Elsevier, vol. 264(1), pages 280-293.
    7. Meloni, Carlo & Pranzo, Marco & Samà, Marcella, 2021. "Risk of delay evaluation in real-time train scheduling with uncertain dwell times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    8. Guigues, Vincent, 2017. "Dual Dynamic Programing with cut selection: Convergence proof and numerical experiments," European Journal of Operational Research, Elsevier, vol. 258(1), pages 47-57.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    2. Powell, Warren B., 2019. "A unified framework for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 795-821.
    3. de Queiroz, Anderson Rodrigo, 2016. "Stochastic hydro-thermal scheduling optimization: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 382-395.
    4. Davi Valladão & Thuener Silva & Marcus Poggi, 2019. "Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns," Annals of Operations Research, Springer, vol. 282(1), pages 379-405, November.
    5. Rudloff, Birgit & Street, Alexandre & Valladão, Davi M., 2014. "Time consistency and risk averse dynamic decision models: Definition, interpretation and practical consequences," European Journal of Operational Research, Elsevier, vol. 234(3), pages 743-750.
    6. Schur, Rouven & Gönsch, Jochen & Hassler, Michael, 2019. "Time-consistent, risk-averse dynamic pricing," European Journal of Operational Research, Elsevier, vol. 277(2), pages 587-603.
    7. Dias, Bruno Henriques & Tomim, Marcelo Aroca & Marcato, André Luís Marques & Ramos, Tales Pulinho & Brandi, Rafael Bruno S. & Junior, Ivo Chaves da Silva & Filho, João Alberto Passos, 2013. "Parallel computing applied to the stochastic dynamic programming for long term operation planning of hydrothermal power systems," European Journal of Operational Research, Elsevier, vol. 229(1), pages 212-222.
    8. Zhou, Shaorui & Zhang, Hui & Shi, Ning & Xu, Zhou & Wang, Fan, 2020. "A new convergent hybrid learning algorithm for two-stage stochastic programs," European Journal of Operational Research, Elsevier, vol. 283(1), pages 33-46.
    9. Wim Ackooij & Welington Oliveira & Yongjia Song, 2019. "On level regularization with normal solutions in decomposition methods for multistage stochastic programming problems," Computational Optimization and Applications, Springer, vol. 74(1), pages 1-42, September.
    10. Lorenzo Reus & Rodolfo Prado, 2022. "Need to Meet Investment Goals? Track Synthetic Indexes with the SDDP Method," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 47-69, June.
    11. W. Ackooij & X. Warin, 2020. "On conditional cuts for stochastic dual dynamic programming," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 173-199, June.
    12. Liu, Rui Peng & Shapiro, Alexander, 2020. "Risk neutral reformulation approach to risk averse stochastic programming," European Journal of Operational Research, Elsevier, vol. 286(1), pages 21-31.
    13. Soares, Murilo Pereira & Street, Alexandre & Valladão, Davi Michel, 2017. "On the solution variability reduction of Stochastic Dual Dynamic Programming applied to energy planning," European Journal of Operational Research, Elsevier, vol. 258(2), pages 743-760.
    14. Andy Philpott & Vitor de Matos & Erlon Finardi, 2013. "On Solving Multistage Stochastic Programs with Coherent Risk Measures," Operations Research, INFORMS, vol. 61(4), pages 957-970, August.
    15. Vincent Guigues, 2014. "SDDP for some interstage dependent risk-averse problems and application to hydro-thermal planning," Computational Optimization and Applications, Springer, vol. 57(1), pages 167-203, January.
    16. Lohmann, Timo & Hering, Amanda S. & Rebennack, Steffen, 2016. "Spatio-temporal hydro forecasting of multireservoir inflows for hydro-thermal scheduling," European Journal of Operational Research, Elsevier, vol. 255(1), pages 243-258.
    17. Löhndorf, Nils & Shapiro, Alexander, 2019. "Modeling time-dependent randomness in stochastic dual dynamic programming," European Journal of Operational Research, Elsevier, vol. 273(2), pages 650-661.
    18. Pritchard, Geoffrey, 2015. "Stochastic inflow modeling for hydropower scheduling problems," European Journal of Operational Research, Elsevier, vol. 246(2), pages 496-504.
    19. Weini Zhang & Hamed Rahimian & Güzin Bayraksan, 2016. "Decomposition Algorithms for Risk-Averse Multistage Stochastic Programs with Application to Water Allocation under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 385-404, August.
    20. Luckny Zéphyr & C. Lindsay Anderson, 2018. "Stochastic dynamic programming approach to managing power system uncertainty with distributed storage," Computational Management Science, Springer, vol. 15(1), pages 87-110, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:61:y:2013:i:6:p:1435-1449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.