IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v60y2012i6p1423-1435.html
   My bibliography  Save this article

A Little Flexibility Is All You Need: On the Asymptotic Value of Flexible Capacity in Parallel Queuing Systems

Author

Listed:
  • Achal Bassamboo

    (Kellogg School of Management, Northwestern University, Evanston, Illinois 60203)

  • Ramandeep S. Randhawa

    (Marshall School of Business, University of Southern California, Los Angeles, California 90089)

  • Jan A. Van Mieghem

    (Kellogg School of Management, Northwestern University, Evanston, Illinois 60203)

Abstract

We analytically study optimal capacity and flexible technology selection in parallel queuing systems. We consider N stochastic arrival streams that may wait in N queues before being processed by one of many resources (technologies) that differ in their flexibility. A resource's ability to process k different arrival types or classes is referred to as level- k flexibility. We determine the capacity portfolio (consisting of all resources at all levels of flexibility) that minimizes linear capacity and linear holding costs in high-volume systems where the arrival rate (lambda) (rightarrow) (infinity). We prove that “a little flexibility is all you need”: the optimal portfolio invests O ((lambda)) in specialized resources and only O ((sqrt)(lambda)) in flexible resources and these optimal capacity choices bring the system into heavy traffic. Further, considering symmetric systems (with type-independent parameters), a novel “folding” methodology allows the specification of the asymptotic queue count process for any capacity portfolio under longest-queue scheduling in closed form that is amenable to optimization. This allows us to sharpen “a little flexibility is all you need”: the asymptotically optimal flexibility configuration for symmetric systems with mild economies of scope invests a lot in specialized resources but only a little in flexible resources and only in level-2 flexibility, but effectively nothing ( o ((sqrt)(lambda))) in level- k > 2 flexibility. We characterize “tailored pairing” as the theoretical benchmark configuration that maximizes the value of flexibility when demand and service uncertainty are the main concerns.

Suggested Citation

  • Achal Bassamboo & Ramandeep S. Randhawa & Jan A. Van Mieghem, 2012. "A Little Flexibility Is All You Need: On the Asymptotic Value of Flexible Capacity in Parallel Queuing Systems," Operations Research, INFORMS, vol. 60(6), pages 1423-1435, December.
  • Handle: RePEc:inm:oropre:v:60:y:2012:i:6:p:1423-1435
    DOI: 10.1287/opre.1120.1107
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1120.1107
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1120.1107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Emil Zavadlav & John O. McClain & L. Joseph Thomas, 1996. "Self-Buffering, Self-Balancing, Self-Flushing Production Lines," Management Science, INFORMS, vol. 42(8), pages 1151-1164, August.
    2. Itai Gurvich & Ward Whitt, 2010. "Service-Level Differentiation in Many-Server Service Systems via Queue-Ratio Routing," Operations Research, INFORMS, vol. 58(2), pages 316-328, April.
    3. Jiri Chod & Nils Rudi & Jan A. Van Mieghem, 2010. "Operational Flexibility and Financial Hedging: Complements or Substitutes?," Management Science, INFORMS, vol. 56(6), pages 1030-1045, June.
    4. Seyed M. Iravani & Mark P. Van Oyen & Katharine T. Sims, 2005. "Structural Flexibility: A New Perspective on the Design of Manufacturing and Service Operations," Management Science, INFORMS, vol. 51(2), pages 151-166, February.
    5. Achal Bassamboo & Ramandeep S. Randhawa & Jan A. Van Mieghem, 2010. "Optimal Flexibility Configurations in Newsvendor Networks: Going Beyond Chaining and Pairing," Management Science, INFORMS, vol. 56(8), pages 1285-1303, August.
    6. Jan A. Van Mieghem, 2003. "Due-Date Scheduling: Asymptotic Optimality of Generalized Longest Queue and Generalized Largest Delay Rules," Operations Research, INFORMS, vol. 51(1), pages 113-122, February.
    7. Wallace J. Hopp & Eylem Tekin & Mark P. Van Oyen, 2004. "Benefits of Skill Chaining in Serial Production Lines with Cross-Trained Workers," Management Science, INFORMS, vol. 50(1), pages 83-98, January.
    8. Rodney B. Wallace & Ward Whitt, 2005. "A Staffing Algorithm for Call Centers with Skill-Based Routing," Manufacturing & Service Operations Management, INFORMS, vol. 7(4), pages 276-294, August.
    9. Yu-Sheng Zheng & Paul Zipkin, 1990. "A Queueing Model to Analyze the Value of Centralized Inventory Information," Operations Research, INFORMS, vol. 38(2), pages 296-307, April.
    10. Jan A. Van Mieghem, 1998. "Investment Strategies for Flexible Resources," Management Science, INFORMS, vol. 44(8), pages 1071-1078, August.
    11. Paul H. Zipkin, 1995. "Performance Analysis of a Multi-Item Production-Inventory System Under Alternative Policies," Management Science, INFORMS, vol. 41(4), pages 690-703, April.
    12. Stephen C. Graves & Brian T. Tomlin, 2003. "Process Flexibility in Supply Chains," Management Science, INFORMS, vol. 49(7), pages 907-919, July.
    13. Charles H. Fine & Robert M. Freund, 1990. "Optimal Investment in Product-Flexible Manufacturing Capacity," Management Science, INFORMS, vol. 36(4), pages 449-466, April.
    14. Shlomo Halfin & Ward Whitt, 1981. "Heavy-Traffic Limits for Queues with Many Exponential Servers," Operations Research, INFORMS, vol. 29(3), pages 567-588, June.
    15. William C. Jordan & Stephen C. Graves, 1995. "Principles on the Benefits of Manufacturing Process Flexibility," Management Science, INFORMS, vol. 41(4), pages 577-594, April.
    16. Sigrún Andradóttir & Hayriye Ayhan & Douglas G. Down, 2001. "Server Assignment Policies for Maximizing the Steady-State Throughput of Finite Queueing Systems," Management Science, INFORMS, vol. 47(10), pages 1421-1439, October.
    17. Seyed Iravani & Bora Kolfal & Mark Van Oyen, 2011. "Capability flexibility: a decision support methodology for parallel service and manufacturing systems with flexible servers," IISE Transactions, Taylor & Francis Journals, vol. 43(5), pages 363-382.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antoine Désir & Vineet Goyal & Yehua Wei & Jiawei Zhang, 2016. "Sparse Process Flexibility Designs: Is the Long Chain Really Optimal?," Operations Research, INFORMS, vol. 64(2), pages 416-431, April.
    2. Guodong Pang & Ohad Perry, 2015. "A Logarithmic Safety Staffing Rule for Contact Centers with Call Blending," Management Science, INFORMS, vol. 61(1), pages 73-91, January.
    3. Marta Pérez-Pérez & Canan Kocabasoglu-Hillmer & Ana María Serrano-Bedia & María Concepción López-Fernández, 2019. "Manufacturing and Supply Chain Flexibility: Building an Integrative Conceptual Model Through Systematic Literature Review and Bibliometric Analysis," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 20(1), pages 1-23, December.
    4. John N. Tsitsiklis & Kuang Xu, 2017. "Flexible Queueing Architectures," Operations Research, INFORMS, vol. 65(5), pages 1398-1413, October.
    5. Shixin Wang & Xuan Wang & Jiawei Zhang, 2021. "A Review of Flexible Processes and Operations," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1804-1824, June.
    6. Sleptchenko, Andrei & Turan, Hasan Hüseyin & Pokharel, Shaligram & ElMekkawy, Tarek Y., 2019. "Cross-training policies for repair shops with spare part inventories," International Journal of Production Economics, Elsevier, vol. 209(C), pages 334-345.
    7. Timothy C. Y. Chan & Daniel Letourneau & Benjamin G. Potter, 2022. "Sparse flexible design: a machine learning approach," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 1066-1116, December.
    8. Shixin Wang, 2023. "The Power of Simple Menus in Robust Selling Mechanisms," Papers 2310.17392, arXiv.org, revised Sep 2024.
    9. Emmett J. Lodree & Nezih Altay & Robert A. Cook, 2019. "Staff assignment policies for a mass casualty event queuing network," Annals of Operations Research, Springer, vol. 283(1), pages 411-442, December.
    10. Soroush Saghafian & Mark P. Van Oyen, 2016. "Compensating for Dynamic Supply Disruptions: Backup Flexibility Design," Operations Research, INFORMS, vol. 64(2), pages 390-405, April.
    11. Mabel C. Chou & Geoffrey A. Chua & Huan Zheng, 2014. "On the Performance of Sparse Process Structures in Partial Postponement Production Systems," Operations Research, INFORMS, vol. 62(2), pages 348-365, April.
    12. Daniel Freund & S'ebastien Martin & Jiayu Kamessi Zhao, 2024. "Two-Sided Flexibility in Platforms," Papers 2404.04709, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Achal Bassamboo & Ramandeep S. Randhawa & Jan A. Van Mieghem, 2010. "Optimal Flexibility Configurations in Newsvendor Networks: Going Beyond Chaining and Pairing," Management Science, INFORMS, vol. 56(8), pages 1285-1303, August.
    2. Schneider, Michael & Grahl, Jörn & Francas, David & Vigo, Daniele, 2013. "A problem-adjusted genetic algorithm for flexibility design," International Journal of Production Economics, Elsevier, vol. 141(1), pages 56-65.
    3. Chou, Mabel C. & Chua, Geoffrey A. & Teo, Chung-Piaw, 2010. "On range and response: Dimensions of process flexibility," European Journal of Operational Research, Elsevier, vol. 207(2), pages 711-724, December.
    4. David Simchi-Levi & Yehua Wei, 2012. "Understanding the Performance of the Long Chain and Sparse Designs in Process Flexibility," Operations Research, INFORMS, vol. 60(5), pages 1125-1141, October.
    5. Mabel C. Chou & Geoffrey A. Chua & Chung-Piaw Teo & Huan Zheng, 2010. "Design for Process Flexibility: Efficiency of the Long Chain and Sparse Structure," Operations Research, INFORMS, vol. 58(1), pages 43-58, February.
    6. Dipankar Bose & A. K. Chatterjee & Samir Barman, 2016. "Towards dominant flexibility configurations in strategic capacity planning under demand uncertainty," OPSEARCH, Springer;Operational Research Society of India, vol. 53(3), pages 604-619, September.
    7. Tanrisever, Fehmi & Morrice, Douglas & Morton, David, 2012. "Managing capacity flexibility in make-to-order production environments," European Journal of Operational Research, Elsevier, vol. 216(2), pages 334-345.
    8. Antoine Désir & Vineet Goyal & Yehua Wei & Jiawei Zhang, 2016. "Sparse Process Flexibility Designs: Is the Long Chain Really Optimal?," Operations Research, INFORMS, vol. 64(2), pages 416-431, April.
    9. Shixin Wang & Xuan Wang & Jiawei Zhang, 2021. "A Review of Flexible Processes and Operations," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1804-1824, June.
    10. Xuan Wang & Jiawei Zhang, 2015. "Process Flexibility: A Distribution-Free Bound on the Performance of k -Chain," Operations Research, INFORMS, vol. 63(3), pages 555-571, June.
    11. Timothy C. Y. Chan & Douglas Fearing, 2019. "Process Flexibility in Baseball: The Value of Positional Flexibility," Management Science, INFORMS, vol. 65(4), pages 1642-1666, April.
    12. Seyed M. Iravani & Mark P. Van Oyen & Katharine T. Sims, 2005. "Structural Flexibility: A New Perspective on the Design of Manufacturing and Service Operations," Management Science, INFORMS, vol. 51(2), pages 151-166, February.
    13. Jörn Grahl & Michael Schneider & David Francas, 2010. "A Problem-Specific and Effective Metaheuristic for Flexibility Design," Working Papers 1001, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz, revised 28 Jan 2010.
    14. Soroush Saghafian & Mark P. Van Oyen, 2016. "Compensating for Dynamic Supply Disruptions: Backup Flexibility Design," Operations Research, INFORMS, vol. 64(2), pages 390-405, April.
    15. Mabel C. Chou & Geoffrey A. Chua & Huan Zheng, 2014. "On the Performance of Sparse Process Structures in Partial Postponement Production Systems," Operations Research, INFORMS, vol. 62(2), pages 348-365, April.
    16. Tianhu Deng & Zuo-Jun Max Shen, 2013. "Process Flexibility Design in Unbalanced Networks," Manufacturing & Service Operations Management, INFORMS, vol. 15(1), pages 24-32, April.
    17. Manu Goyal & Serguei Netessine, 2011. "Volume Flexibility, Product Flexibility, or Both: The Role of Demand Correlation and Product Substitution," Manufacturing & Service Operations Management, INFORMS, vol. 13(2), pages 180-193, March.
    18. Timothy C. Y. Chan & Daniel Letourneau & Benjamin G. Potter, 2022. "Sparse flexible design: a machine learning approach," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 1066-1116, December.
    19. Zhen Xu & Hailun Zhang & Jiheng Zhang & Rachel Q. Zhang, 2020. "Online Demand Fulfillment Under Limited Flexibility," Management Science, INFORMS, vol. 66(10), pages 4667-4685, October.
    20. Wallace J. Hopp & Seyed M. R. Iravani & Wendy Lu Xu, 2010. "Vertical Flexibility in Supply Chains," Management Science, INFORMS, vol. 56(3), pages 495-502, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:60:y:2012:i:6:p:1423-1435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.